|
from typing import Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
|
|
class PatchDropout(nn.Module): |
|
""" |
|
https://arxiv.org/abs/2212.00794 |
|
""" |
|
return_indices: torch.jit.Final[bool] |
|
|
|
def __init__( |
|
self, |
|
prob: float = 0.5, |
|
num_prefix_tokens: int = 1, |
|
ordered: bool = False, |
|
return_indices: bool = False, |
|
): |
|
super().__init__() |
|
assert 0 <= prob < 1. |
|
self.prob = prob |
|
self.num_prefix_tokens = num_prefix_tokens |
|
self.ordered = ordered |
|
self.return_indices = return_indices |
|
|
|
def forward(self, x) -> Union[torch.Tensor, Tuple[torch.Tensor, Optional[torch.Tensor]]]: |
|
if not self.training or self.prob == 0.: |
|
if self.return_indices: |
|
return x, None |
|
return x |
|
|
|
if self.num_prefix_tokens: |
|
prefix_tokens, x = x[:, :self.num_prefix_tokens], x[:, self.num_prefix_tokens:] |
|
else: |
|
prefix_tokens = None |
|
|
|
B = x.shape[0] |
|
L = x.shape[1] |
|
num_keep = max(1, int(L * (1. - self.prob))) |
|
keep_indices = torch.argsort(torch.randn(B, L, device=x.device), dim=-1)[:, :num_keep] |
|
if self.ordered: |
|
|
|
|
|
keep_indices = keep_indices.sort(dim=-1)[0] |
|
x = x.gather(1, keep_indices.unsqueeze(-1).expand((-1, -1) + x.shape[2:])) |
|
|
|
if prefix_tokens is not None: |
|
x = torch.cat((prefix_tokens, x), dim=1) |
|
|
|
if self.return_indices: |
|
return x, keep_indices |
|
return x |
|
|