File size: 8,457 Bytes
786f6a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
""" MLP module w/ dropout and configurable activation layer

Hacked together by / Copyright 2020 Ross Wightman
"""
from functools import partial

from torch import nn as nn

from .grn import GlobalResponseNorm
from .helpers import to_2tuple


class Mlp(nn.Module):
    """ MLP as used in Vision Transformer, MLP-Mixer and related networks
    """
    def __init__(
            self,
            in_features,
            hidden_features=None,
            out_features=None,
            act_layer=nn.GELU,
            norm_layer=None,
            bias=True,
            drop=0.,
            use_conv=False,
    ):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        bias = to_2tuple(bias)
        drop_probs = to_2tuple(drop)
        linear_layer = partial(nn.Conv2d, kernel_size=1) if use_conv else nn.Linear

        self.fc1 = linear_layer(in_features, hidden_features, bias=bias[0])
        self.act = act_layer()
        self.drop1 = nn.Dropout(drop_probs[0])
        self.norm = norm_layer(hidden_features) if norm_layer is not None else nn.Identity()
        self.fc2 = linear_layer(hidden_features, out_features, bias=bias[1])
        self.drop2 = nn.Dropout(drop_probs[1])

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop1(x)
        x = self.norm(x)
        x = self.fc2(x)
        x = self.drop2(x)
        return x


class GluMlp(nn.Module):
    """ MLP w/ GLU style gating
    See: https://arxiv.org/abs/1612.08083, https://arxiv.org/abs/2002.05202
    """
    def __init__(
            self,
            in_features,
            hidden_features=None,
            out_features=None,
            act_layer=nn.Sigmoid,
            norm_layer=None,
            bias=True,
            drop=0.,
            use_conv=False,
            gate_last=True,
    ):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        assert hidden_features % 2 == 0
        bias = to_2tuple(bias)
        drop_probs = to_2tuple(drop)
        linear_layer = partial(nn.Conv2d, kernel_size=1) if use_conv else nn.Linear
        self.chunk_dim = 1 if use_conv else -1
        self.gate_last = gate_last  # use second half of width for gate

        self.fc1 = linear_layer(in_features, hidden_features, bias=bias[0])
        self.act = act_layer()
        self.drop1 = nn.Dropout(drop_probs[0])
        self.norm = norm_layer(hidden_features // 2) if norm_layer is not None else nn.Identity()
        self.fc2 = linear_layer(hidden_features // 2, out_features, bias=bias[1])
        self.drop2 = nn.Dropout(drop_probs[1])

    def init_weights(self):
        # override init of fc1 w/ gate portion set to weight near zero, bias=1
        fc1_mid = self.fc1.bias.shape[0] // 2
        nn.init.ones_(self.fc1.bias[fc1_mid:])
        nn.init.normal_(self.fc1.weight[fc1_mid:], std=1e-6)

    def forward(self, x):
        x = self.fc1(x)
        x1, x2 = x.chunk(2, dim=self.chunk_dim)
        x = x1 * self.act(x2) if self.gate_last else self.act(x1) * x2
        x = self.drop1(x)
        x = self.norm(x)
        x = self.fc2(x)
        x = self.drop2(x)
        return x


SwiGLUPacked = partial(GluMlp, act_layer=nn.SiLU, gate_last=False)


class SwiGLU(nn.Module):
    """ SwiGLU
    NOTE: GluMLP above can implement SwiGLU, but this impl has split fc1 and
    better matches some other common impl which makes mapping checkpoints simpler.
    """
    def __init__(
            self,
            in_features,
            hidden_features=None,
            out_features=None,
            act_layer=nn.SiLU,
            norm_layer=None,
            bias=True,
            drop=0.,
    ):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        bias = to_2tuple(bias)
        drop_probs = to_2tuple(drop)

        self.fc1_g = nn.Linear(in_features, hidden_features, bias=bias[0])
        self.fc1_x = nn.Linear(in_features, hidden_features, bias=bias[0])
        self.act = act_layer()
        self.drop1 = nn.Dropout(drop_probs[0])
        self.norm = norm_layer(hidden_features) if norm_layer is not None else nn.Identity()
        self.fc2 = nn.Linear(hidden_features, out_features, bias=bias[1])
        self.drop2 = nn.Dropout(drop_probs[1])

    def init_weights(self):
        # override init of fc1 w/ gate portion set to weight near zero, bias=1
        nn.init.ones_(self.fc1_g.bias)
        nn.init.normal_(self.fc1_g.weight, std=1e-6)

    def forward(self, x):
        x_gate = self.fc1_g(x)
        x = self.fc1_x(x)
        x = self.act(x_gate) * x
        x = self.drop1(x)
        x = self.norm(x)
        x = self.fc2(x)
        x = self.drop2(x)
        return x


class GatedMlp(nn.Module):
    """ MLP as used in gMLP
    """
    def __init__(
            self,
            in_features,
            hidden_features=None,
            out_features=None,
            act_layer=nn.GELU,
            norm_layer=None,
            gate_layer=None,
            bias=True,
            drop=0.,
    ):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        bias = to_2tuple(bias)
        drop_probs = to_2tuple(drop)

        self.fc1 = nn.Linear(in_features, hidden_features, bias=bias[0])
        self.act = act_layer()
        self.drop1 = nn.Dropout(drop_probs[0])
        if gate_layer is not None:
            assert hidden_features % 2 == 0
            self.gate = gate_layer(hidden_features)
            hidden_features = hidden_features // 2  # FIXME base reduction on gate property?
        else:
            self.gate = nn.Identity()
        self.norm = norm_layer(hidden_features) if norm_layer is not None else nn.Identity()
        self.fc2 = nn.Linear(hidden_features, out_features, bias=bias[1])
        self.drop2 = nn.Dropout(drop_probs[1])

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop1(x)
        x = self.gate(x)
        x = self.norm(x)
        x = self.fc2(x)
        x = self.drop2(x)
        return x


class ConvMlp(nn.Module):
    """ MLP using 1x1 convs that keeps spatial dims
    """
    def __init__(
            self,
            in_features,
            hidden_features=None,
            out_features=None,
            act_layer=nn.ReLU,
            norm_layer=None,
            bias=True,
            drop=0.,
    ):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        bias = to_2tuple(bias)

        self.fc1 = nn.Conv2d(in_features, hidden_features, kernel_size=1, bias=bias[0])
        self.norm = norm_layer(hidden_features) if norm_layer else nn.Identity()
        self.act = act_layer()
        self.drop = nn.Dropout(drop)
        self.fc2 = nn.Conv2d(hidden_features, out_features, kernel_size=1, bias=bias[1])

    def forward(self, x):
        x = self.fc1(x)
        x = self.norm(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        return x


class GlobalResponseNormMlp(nn.Module):
    """ MLP w/ Global Response Norm (see grn.py), nn.Linear or 1x1 Conv2d
    """
    def __init__(
            self,
            in_features,
            hidden_features=None,
            out_features=None,
            act_layer=nn.GELU,
            bias=True,
            drop=0.,
            use_conv=False,
    ):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        bias = to_2tuple(bias)
        drop_probs = to_2tuple(drop)
        linear_layer = partial(nn.Conv2d, kernel_size=1) if use_conv else nn.Linear

        self.fc1 = linear_layer(in_features, hidden_features, bias=bias[0])
        self.act = act_layer()
        self.drop1 = nn.Dropout(drop_probs[0])
        self.grn = GlobalResponseNorm(hidden_features, channels_last=not use_conv)
        self.fc2 = linear_layer(hidden_features, out_features, bias=bias[1])
        self.drop2 = nn.Dropout(drop_probs[1])

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop1(x)
        x = self.grn(x)
        x = self.fc2(x)
        x = self.drop2(x)
        return x