--- license: mit --- # BERT fine-tuned commodities This collection of fine-tuned BERT models were generated with the data of the "TRENCHANT: TRENd PrediCtion on Heterogeneous informAtion NeTworks" article. Source code and networks are available at the following GitHub repo: https://github.com/paulorvdc/TRENCHANT ## how to cite ``` @article{doCarmo_ReisFilho_Marcacini_2023, title={TRENCHANT: TRENd PrediCtion on Heterogeneous informAtion NeTworks}, volume={13}, url={https://sol.sbc.org.br/journals/index.php/jidm/article/view/2546}, DOI={10.5753/jidm.2022.2546}, number={6}, journal={Journal of Information and Data Management}, author={do Carmo, P. and Reis Filho, I. J. and Marcacini, R.}, year={2023}, month={Jan.} } ``` ## how to use ``` from sentence_transformers import SentenceTransformer, LoggingHandler import numpy as np import logging # load model np.set_printoptions(threshold=100) logging.basicConfig(format='%(asctime)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=logging.INFO, handlers=[LoggingHandler()]) model = SentenceTransformer('paulorvdc/sentencebert-fine-tuned-weeks-corn') finetuned_embeddings = list(model.encode(['Livestock Producers in Brazil Fear Diversion of Corn to Export and Ethanol Production', 'Brazilian Farmers Undecided about Safrinha Corn Acreage'])) ```