--- license: cc-by-nc-4.0 tags: - generated_from_trainer datasets: - common_voice_6_1 metrics: - wer base_model: facebook/mms-1b-all model-index: - name: wav2vec2-large-mms-1b-turkish-colab-test results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: common_voice_6_1 type: common_voice_6_1 config: tr split: test args: tr metrics: - type: wer value: 0.22040649576141355 name: Wer --- # wav2vec2-large-mms-1b-turkish-colab-test This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the common_voice_6_1 dataset. It achieves the following results on the evaluation set: - Loss: 0.1534 - Wer: 0.2204 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.5985 | 0.92 | 100 | 0.1805 | 0.2490 | | 0.2839 | 1.83 | 200 | 0.1657 | 0.2350 | | 0.2662 | 2.75 | 300 | 0.1579 | 0.2274 | | 0.2413 | 3.67 | 400 | 0.1534 | 0.2204 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.13.0 - Tokenizers 0.13.3