--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer datasets: - wmt20_mlqe_task1 model-index: - name: xlmr-en-de-no_shuffled-orig-test1000 results: [] --- # xlmr-en-de-no_shuffled-orig-test1000 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the wmt20_mlqe_task1 dataset. It achieves the following results on the evaluation set: - Loss: 0.5090 - R Squared: 0.0865 - Mae: 0.5291 - Pearson R: 0.3627 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 1986 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | R Squared | Mae | Pearson R | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---------:| | No log | 1.0 | 438 | 0.5544 | 0.0051 | 0.5990 | 0.3021 | | 0.6821 | 2.0 | 876 | 0.5527 | 0.0082 | 0.5998 | 0.1601 | | 0.7102 | 3.0 | 1314 | 0.5400 | 0.0309 | 0.5712 | 0.3027 | | 0.7194 | 4.0 | 1752 | 0.5132 | 0.0791 | 0.5401 | 0.3557 | | 0.6285 | 5.0 | 2190 | 0.5090 | 0.0865 | 0.5291 | 0.3627 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.0.1+cu117 - Datasets 2.14.6 - Tokenizers 0.14.1