--- language: - kn license: apache-2.0 tags: - whisper-event - generated_from_trainer metrics: - wer base_model: openai/whisper-small model-index: - name: Whisper Base Kn - Bharat Ramanathan results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: google/fleurs type: google/fleurs config: kn_in split: test metrics: - type: wer value: 32.51 name: WER --- # Whisper Base Kn - Bharat Ramanathan This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1974 - Wer: 30.8790 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 96 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.572 | 0.1 | 500 | 0.3198 | 50.3005 | | 0.3153 | 0.2 | 1000 | 0.2464 | 37.2652 | | 0.2533 | 0.3 | 1500 | 0.2298 | 36.5515 | | 0.2212 | 1.04 | 2000 | 0.2157 | 34.5229 | | 0.2013 | 1.14 | 2500 | 0.2090 | 32.6071 | | 0.1881 | 1.24 | 3000 | 0.2043 | 32.7198 | | 0.1784 | 1.34 | 3500 | 0.2014 | 30.8039 | | 0.1715 | 2.08 | 4000 | 0.2014 | 31.5928 | | 0.166 | 2.18 | 4500 | 0.1991 | 31.2547 | | 0.1616 | 2.28 | 5000 | 0.1974 | 30.8790 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2