18 ToolSandbox: A Stateful, Conversational, Interactive Evaluation Benchmark for LLM Tool Use Capabilities Recent large language models (LLMs) advancements sparked a growing research interest in tool assisted LLMs solving real-world challenges, which calls for comprehensive evaluation of tool-use capabilities. While previous works focused on either evaluating over stateless web services (RESTful API), based on a single turn user prompt, or an off-policy dialog trajectory, ToolSandbox includes stateful tool execution, implicit state dependencies between tools, a built-in user simulator supporting on-policy conversational evaluation and a dynamic evaluation strategy for intermediate and final milestones over an arbitrary trajectory. We show that open source and proprietary models have a significant performance gap, and complex tasks like State Dependency, Canonicalization and Insufficient Information defined in ToolSandbox are challenging even the most capable SOTA LLMs, providing brand-new insights into tool-use LLM capabilities. ToolSandbox evaluation framework is released at https://github.com/apple/ToolSandbox 12 authors · Aug 8, 2024 4
- WISE-Flow: Workflow-Induced Structured Experience for Self-Evolving Conversational Service Agents Large language model (LLM)-based agents are widely deployed in user-facing services but remain error-prone in new tasks, tend to repeat the same failure patterns, and show substantial run-to-run variability. Fixing failures via environment-specific training or manual patching is costly and hard to scale. To enable self-evolving agents in user-facing service environments, we propose WISE-Flow, a workflow-centric framework that converts historical service interactions into reusable procedural experience by inducing workflows with prerequisite-augmented action blocks. At deployment, WISE-Flow aligns the agent's execution trajectory to retrieved workflows and performs prerequisite-aware feasibility reasoning to achieve state-grounded next actions. Experiments on ToolSandbox and τ^2-bench show consistent improvement across base models. 7 authors · Jan 12
- Graph RAG-Tool Fusion Recent developments in retrieval-augmented generation (RAG) for selecting relevant tools from a tool knowledge base enable LLM agents to scale their complex tool calling capabilities to hundreds or thousands of external tools, APIs, or agents-as-tools. However, traditional RAG-based tool retrieval fails to capture structured dependencies between tools, limiting the retrieval accuracy of a retrieved tool's dependencies. For example, among a vector database of tools, a "get stock price" API requires a "stock ticker" parameter from a "get stock ticker" API, and both depend on OS-level internet connectivity tools. In this paper, we address this limitation by introducing Graph RAG-Tool Fusion, a novel plug-and-play approach that combines the strengths of vector-based retrieval with efficient graph traversal to capture all relevant tools (nodes) along with any nested dependencies (edges) within the predefined tool knowledge graph. We also present ToolLinkOS, a new tool selection benchmark of 573 fictional tools, spanning over 15 industries, each with an average of 6.3 tool dependencies. We demonstrate that Graph RAG-Tool Fusion achieves absolute improvements of 71.7% and 22.1% over na\"ive RAG on ToolLinkOS and ToolSandbox benchmarks, respectively (mAP@10). ToolLinkOS dataset is available at https://github.com/EliasLumer/Graph-RAG-Tool-Fusion-ToolLinkOS 5 authors · Feb 10, 2025
- CM2: Reinforcement Learning with Checklist Rewards for Multi-Turn and Multi-Step Agentic Tool Use AI agents are increasingly used to solve real-world tasks by reasoning over multi-turn user interactions and invoking external tools. However, applying reinforcement learning to such settings remains difficult: realistic objectives often lack verifiable rewards and instead emphasize open-ended behaviors; moreover, RL for multi-turn, multi-step agentic tool use is still underexplored; and building and maintaining executable tool environments is costly, limiting scale and coverage. We propose CM2, an RL framework that replaces verifiable outcome rewards with checklist rewards. CM2 decomposes each turn's intended behavior into fine-grained binary criteria with explicit evidence grounding and structured metadata, turning open-ended judging into more stable classification-style decisions. To balance stability and informativeness, our method adopts a strategy of sparse reward assignment but dense evaluation criteria. Training is performed in a scalable LLM-simulated tool environment, avoiding heavy engineering for large tool sets. Experiments show that CM2 consistently improves over supervised fine-tuning. Starting from an 8B Base model and training on an 8k-example RL dataset, CM2 improves over the SFT counterpart by 8 points on tau^-Bench, by 10 points on BFCL-V4, and by 12 points on ToolSandbox. The results match or even outperform similarly sized open-source baselines, including the judging model. CM2 thus provides a scalable recipe for optimizing multi-turn, multi-step tool-using agents without relying on verifiable rewards. Code provided by the open-source community: https://github.com/namezhenzhang/CM2-RLCR-Tool-Agent. 14 authors · Feb 12