pabloma09 commited on
Commit
0fdca6f
·
verified ·
1 Parent(s): 3247697

End of training

Browse files
README.md CHANGED
@@ -1,7 +1,7 @@
1
  ---
2
  library_name: transformers
3
  license: mit
4
- base_model: microsoft/layoutlm-base-uncased
5
  tags:
6
  - generated_from_trainer
7
  datasets:
@@ -16,16 +16,16 @@ should probably proofread and complete it, then remove this comment. -->
16
 
17
  # layoutlm-with-funsd
18
 
19
- This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
20
  It achieves the following results on the evaluation set:
21
- - Loss: 1.3453
22
- - Eader: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 16}
23
- - Nswer: {'precision': 0.03614457831325301, 'recall': 0.043478260869565216, 'f1': 0.039473684210526314, 'number': 69}
24
- - Uestion: {'precision': 0.022556390977443608, 'recall': 0.08695652173913043, 'f1': 0.03582089552238806, 'number': 69}
25
- - Overall Precision: 0.0238
26
- - Overall Recall: 0.0584
27
- - Overall F1: 0.0338
28
- - Overall Accuracy: 0.3449
29
 
30
  ## Model description
31
 
@@ -50,14 +50,28 @@ The following hyperparameters were used during training:
50
  - seed: 42
51
  - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
52
  - lr_scheduler_type: linear
53
- - num_epochs: 1
54
  - mixed_precision_training: Native AMP
55
 
56
  ### Training results
57
 
58
- | Training Loss | Epoch | Step | Validation Loss | Eader | Nswer | Uestion | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
59
- |:-------------:|:-----:|:----:|:---------------:|:----------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
60
- | 1.4524 | 1.0 | 4 | 1.3453 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 16} | {'precision': 0.03614457831325301, 'recall': 0.043478260869565216, 'f1': 0.039473684210526314, 'number': 69} | {'precision': 0.022556390977443608, 'recall': 0.08695652173913043, 'f1': 0.03582089552238806, 'number': 69} | 0.0238 | 0.0584 | 0.0338 | 0.3449 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61
 
62
 
63
  ### Framework versions
 
1
  ---
2
  library_name: transformers
3
  license: mit
4
+ base_model: pabloma09/layoutlm-with-funsd
5
  tags:
6
  - generated_from_trainer
7
  datasets:
 
16
 
17
  # layoutlm-with-funsd
18
 
19
+ This model is a fine-tuned version of [pabloma09/layoutlm-with-funsd](https://huggingface.co/pabloma09/layoutlm-with-funsd) on the funsd dataset.
20
  It achieves the following results on the evaluation set:
21
+ - Loss: 0.6555
22
+ - Eader: {'precision': 0.45454545454545453, 'recall': 0.3125, 'f1': 0.3703703703703703, 'number': 16}
23
+ - Nswer: {'precision': 0.4520547945205479, 'recall': 0.4782608695652174, 'f1': 0.46478873239436624, 'number': 69}
24
+ - Uestion: {'precision': 0.44047619047619047, 'recall': 0.5362318840579711, 'f1': 0.48366013071895425, 'number': 69}
25
+ - Overall Precision: 0.4464
26
+ - Overall Recall: 0.4870
27
+ - Overall F1: 0.4658
28
+ - Overall Accuracy: 0.7819
29
 
30
  ## Model description
31
 
 
50
  - seed: 42
51
  - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
52
  - lr_scheduler_type: linear
53
+ - num_epochs: 15
54
  - mixed_precision_training: Native AMP
55
 
56
  ### Training results
57
 
58
+ | Training Loss | Epoch | Step | Validation Loss | Eader | Nswer | Uestion | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
59
+ |:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
60
+ | 1.2774 | 1.0 | 4 | 1.2327 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 16} | {'precision': 0.03164556962025317, 'recall': 0.07246376811594203, 'f1': 0.04405286343612334, 'number': 69} | {'precision': 0.04433497536945813, 'recall': 0.13043478260869565, 'f1': 0.0661764705882353, 'number': 69} | 0.0383 | 0.0909 | 0.0538 | 0.4555 |
61
+ | 1.0828 | 2.0 | 8 | 1.0961 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 16} | {'precision': 0.1286549707602339, 'recall': 0.3188405797101449, 'f1': 0.18333333333333332, 'number': 69} | {'precision': 0.12138728323699421, 'recall': 0.30434782608695654, 'f1': 0.17355371900826447, 'number': 69} | 0.125 | 0.2792 | 0.1727 | 0.5891 |
62
+ | 0.9043 | 3.0 | 12 | 1.0033 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 16} | {'precision': 0.17391304347826086, 'recall': 0.34782608695652173, 'f1': 0.23188405797101447, 'number': 69} | {'precision': 0.15328467153284672, 'recall': 0.30434782608695654, 'f1': 0.20388349514563106, 'number': 69} | 0.1636 | 0.2922 | 0.2098 | 0.6183 |
63
+ | 0.8002 | 4.0 | 16 | 0.8873 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 16} | {'precision': 0.2204724409448819, 'recall': 0.4057971014492754, 'f1': 0.2857142857142857, 'number': 69} | {'precision': 0.22580645161290322, 'recall': 0.4057971014492754, 'f1': 0.29015544041450775, 'number': 69} | 0.2222 | 0.3636 | 0.2759 | 0.6336 |
64
+ | 0.6937 | 5.0 | 20 | 0.7914 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 16} | {'precision': 0.308411214953271, 'recall': 0.4782608695652174, 'f1': 0.37499999999999994, 'number': 69} | {'precision': 0.2672413793103448, 'recall': 0.4492753623188406, 'f1': 0.33513513513513515, 'number': 69} | 0.2844 | 0.4156 | 0.3377 | 0.6866 |
65
+ | 0.5711 | 6.0 | 24 | 0.7298 | {'precision': 0.1, 'recall': 0.0625, 'f1': 0.07692307692307693, 'number': 16} | {'precision': 0.375, 'recall': 0.5217391304347826, 'f1': 0.43636363636363634, 'number': 69} | {'precision': 0.30973451327433627, 'recall': 0.5072463768115942, 'f1': 0.3846153846153846, 'number': 69} | 0.3288 | 0.4675 | 0.3861 | 0.7273 |
66
+ | 0.4902 | 7.0 | 28 | 0.6971 | {'precision': 0.125, 'recall': 0.125, 'f1': 0.125, 'number': 16} | {'precision': 0.42168674698795183, 'recall': 0.5072463768115942, 'f1': 0.4605263157894737, 'number': 69} | {'precision': 0.3684210526315789, 'recall': 0.5072463768115942, 'f1': 0.4268292682926829, 'number': 69} | 0.3711 | 0.4675 | 0.4138 | 0.7519 |
67
+ | 0.4757 | 8.0 | 32 | 0.6605 | {'precision': 0.11764705882352941, 'recall': 0.125, 'f1': 0.12121212121212122, 'number': 16} | {'precision': 0.43373493975903615, 'recall': 0.5217391304347826, 'f1': 0.4736842105263158, 'number': 69} | {'precision': 0.38636363636363635, 'recall': 0.4927536231884058, 'f1': 0.4331210191082802, 'number': 69} | 0.3830 | 0.4675 | 0.4211 | 0.7634 |
68
+ | 0.4611 | 9.0 | 36 | 0.6649 | {'precision': 0.14285714285714285, 'recall': 0.125, 'f1': 0.13333333333333333, 'number': 16} | {'precision': 0.4533333333333333, 'recall': 0.4927536231884058, 'f1': 0.4722222222222222, 'number': 69} | {'precision': 0.40476190476190477, 'recall': 0.4927536231884058, 'f1': 0.4444444444444444, 'number': 69} | 0.4046 | 0.4545 | 0.4281 | 0.7704 |
69
+ | 0.3752 | 10.0 | 40 | 0.6528 | {'precision': 0.2727272727272727, 'recall': 0.1875, 'f1': 0.2222222222222222, 'number': 16} | {'precision': 0.4594594594594595, 'recall': 0.4927536231884058, 'f1': 0.4755244755244755, 'number': 69} | {'precision': 0.40963855421686746, 'recall': 0.4927536231884058, 'f1': 0.44736842105263164, 'number': 69} | 0.4226 | 0.4610 | 0.4410 | 0.7742 |
70
+ | 0.3663 | 11.0 | 44 | 0.6418 | {'precision': 0.3076923076923077, 'recall': 0.25, 'f1': 0.27586206896551724, 'number': 16} | {'precision': 0.4533333333333333, 'recall': 0.4927536231884058, 'f1': 0.4722222222222222, 'number': 69} | {'precision': 0.43373493975903615, 'recall': 0.5217391304347826, 'f1': 0.4736842105263158, 'number': 69} | 0.4327 | 0.4805 | 0.4554 | 0.7811 |
71
+ | 0.3244 | 12.0 | 48 | 0.6540 | {'precision': 0.5, 'recall': 0.3125, 'f1': 0.38461538461538464, 'number': 16} | {'precision': 0.4583333333333333, 'recall': 0.4782608695652174, 'f1': 0.4680851063829787, 'number': 69} | {'precision': 0.42857142857142855, 'recall': 0.5217391304347826, 'f1': 0.47058823529411764, 'number': 69} | 0.4458 | 0.4805 | 0.4625 | 0.7803 |
72
+ | 0.3294 | 13.0 | 52 | 0.6585 | {'precision': 0.5, 'recall': 0.3125, 'f1': 0.38461538461538464, 'number': 16} | {'precision': 0.4266666666666667, 'recall': 0.463768115942029, 'f1': 0.4444444444444445, 'number': 69} | {'precision': 0.43373493975903615, 'recall': 0.5217391304347826, 'f1': 0.4736842105263158, 'number': 69} | 0.4345 | 0.4740 | 0.4534 | 0.7803 |
73
+ | 0.2977 | 14.0 | 56 | 0.6577 | {'precision': 0.5, 'recall': 0.3125, 'f1': 0.38461538461538464, 'number': 16} | {'precision': 0.4383561643835616, 'recall': 0.463768115942029, 'f1': 0.45070422535211263, 'number': 69} | {'precision': 0.42857142857142855, 'recall': 0.5217391304347826, 'f1': 0.47058823529411764, 'number': 69} | 0.4371 | 0.4740 | 0.4548 | 0.7796 |
74
+ | 0.2874 | 15.0 | 60 | 0.6555 | {'precision': 0.45454545454545453, 'recall': 0.3125, 'f1': 0.3703703703703703, 'number': 16} | {'precision': 0.4520547945205479, 'recall': 0.4782608695652174, 'f1': 0.46478873239436624, 'number': 69} | {'precision': 0.44047619047619047, 'recall': 0.5362318840579711, 'f1': 0.48366013071895425, 'number': 69} | 0.4464 | 0.4870 | 0.4658 | 0.7819 |
75
 
76
 
77
  ### Framework versions
logs/events.out.tfevents.1740668344.DESKTOP-HA84SVN.2309656.2 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a2a7a6e31e6ff227b3d43a370ae8b218ab8aaa80474d1b529691c46b4c217d38
3
- size 15094
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cceec94089de344bbc5c80cc9839115b0242217a3844d59ed28f06bad40db822
3
+ size 16144
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f4a74eb23fe2571d4c243f9383873a181b0d7839c8da601e071166d39d32067d
3
  size 450548984
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fc9064b46eecb07e43015ca9f1c1687f59afa135fdc1ec7b82e5f39b4f746b77
3
  size 450548984