End of training
Browse files- README.md +20 -26
- logs/events.out.tfevents.1741602158.DESKTOP-HA84SVN.75042.7 +2 -2
- model.safetensors +1 -1
README.md
CHANGED
@@ -18,14 +18,14 @@ should probably proofread and complete it, then remove this comment. -->
|
|
18 |
|
19 |
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
|
20 |
It achieves the following results on the evaluation set:
|
21 |
-
- Loss: 0.
|
22 |
-
- Eader: {'precision': 0.
|
23 |
-
- Nswer: {'precision': 0.
|
24 |
-
- Uestion: {'precision': 0.
|
25 |
-
- Overall Precision: 0.
|
26 |
-
- Overall Recall: 0.
|
27 |
-
- Overall F1: 0.
|
28 |
-
- Overall Accuracy: 0.
|
29 |
|
30 |
## Model description
|
31 |
|
@@ -50,28 +50,22 @@ The following hyperparameters were used during training:
|
|
50 |
- seed: 42
|
51 |
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
52 |
- lr_scheduler_type: linear
|
53 |
-
- num_epochs:
|
54 |
- mixed_precision_training: Native AMP
|
55 |
|
56 |
### Training results
|
57 |
|
58 |
-
| Training Loss | Epoch | Step | Validation Loss | Eader | Nswer
|
59 |
-
|
60 |
-
| 1.
|
61 |
-
| 1.
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.249 | 10.0 | 80 | 0.6137 | {'precision': 0.4423076923076923, 'recall': 0.27710843373493976, 'f1': 0.34074074074074073, 'number': 83} | {'precision': 0.5041322314049587, 'recall': 0.5951219512195122, 'f1': 0.5458612975391499, 'number': 205} | {'precision': 0.3607142857142857, 'recall': 0.43722943722943725, 'f1': 0.39530332681017616, 'number': 231} | 0.4286 | 0.4740 | 0.4501 | 0.7981 |
|
70 |
-
| 0.2288 | 11.0 | 88 | 0.6367 | {'precision': 0.38571428571428573, 'recall': 0.3253012048192771, 'f1': 0.35294117647058826, 'number': 83} | {'precision': 0.48717948717948717, 'recall': 0.5560975609756098, 'f1': 0.5193621867881548, 'number': 205} | {'precision': 0.38267148014440433, 'recall': 0.4588744588744589, 'f1': 0.4173228346456693, 'number': 231} | 0.4251 | 0.4759 | 0.4491 | 0.7912 |
|
71 |
-
| 0.2031 | 12.0 | 96 | 0.6401 | {'precision': 0.46, 'recall': 0.27710843373493976, 'f1': 0.3458646616541353, 'number': 83} | {'precision': 0.497907949790795, 'recall': 0.5804878048780487, 'f1': 0.536036036036036, 'number': 205} | {'precision': 0.3800738007380074, 'recall': 0.4458874458874459, 'f1': 0.4103585657370518, 'number': 231} | 0.4375 | 0.4721 | 0.4541 | 0.7985 |
|
72 |
-
| 0.193 | 13.0 | 104 | 0.6539 | {'precision': 0.37142857142857144, 'recall': 0.3132530120481928, 'f1': 0.33986928104575165, 'number': 83} | {'precision': 0.5321100917431193, 'recall': 0.5658536585365853, 'f1': 0.5484633569739952, 'number': 205} | {'precision': 0.3969465648854962, 'recall': 0.45021645021645024, 'f1': 0.4219066937119675, 'number': 231} | 0.4473 | 0.4740 | 0.4602 | 0.7904 |
|
73 |
-
| 0.1895 | 14.0 | 112 | 0.6557 | {'precision': 0.39344262295081966, 'recall': 0.2891566265060241, 'f1': 0.3333333333333333, 'number': 83} | {'precision': 0.5429864253393665, 'recall': 0.5853658536585366, 'f1': 0.5633802816901408, 'number': 205} | {'precision': 0.3916349809885932, 'recall': 0.4458874458874459, 'f1': 0.41700404858299595, 'number': 231} | 0.4532 | 0.4759 | 0.4643 | 0.7904 |
|
74 |
-
| 0.1775 | 15.0 | 120 | 0.6561 | {'precision': 0.3770491803278688, 'recall': 0.27710843373493976, 'f1': 0.3194444444444444, 'number': 83} | {'precision': 0.5213675213675214, 'recall': 0.5951219512195122, 'f1': 0.5558086560364465, 'number': 205} | {'precision': 0.3722627737226277, 'recall': 0.44155844155844154, 'f1': 0.40396039603960393, 'number': 231} | 0.4341 | 0.4759 | 0.4540 | 0.7927 |
|
75 |
|
76 |
|
77 |
### Framework versions
|
|
|
18 |
|
19 |
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
|
20 |
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.5883
|
22 |
+
- Eader: {'precision': 0.3877551020408163, 'recall': 0.2289156626506024, 'f1': 0.2878787878787879, 'number': 83}
|
23 |
+
- Nswer: {'precision': 0.4581673306772908, 'recall': 0.5609756097560976, 'f1': 0.5043859649122806, 'number': 205}
|
24 |
+
- Uestion: {'precision': 0.36981132075471695, 'recall': 0.42424242424242425, 'f1': 0.3951612903225806, 'number': 231}
|
25 |
+
- Overall Precision: 0.4106
|
26 |
+
- Overall Recall: 0.4470
|
27 |
+
- Overall F1: 0.4280
|
28 |
+
- Overall Accuracy: 0.7852
|
29 |
|
30 |
## Model description
|
31 |
|
|
|
50 |
- seed: 42
|
51 |
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
52 |
- lr_scheduler_type: linear
|
53 |
+
- num_epochs: 9
|
54 |
- mixed_precision_training: Native AMP
|
55 |
|
56 |
### Training results
|
57 |
|
58 |
+
| Training Loss | Epoch | Step | Validation Loss | Eader | Nswer | Uestion | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
59 |
+
|:-------------:|:-----:|:----:|:---------------:|:----------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
60 |
+
| 1.3004 | 1.0 | 8 | 1.0817 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 83} | {'precision': 0.07280832095096583, 'recall': 0.23902439024390243, 'f1': 0.11161731207289294, 'number': 205} | {'precision': 0.06845238095238096, 'recall': 0.19913419913419914, 'f1': 0.1018826135105205, 'number': 231} | 0.0706 | 0.1830 | 0.1019 | 0.6047 |
|
61 |
+
| 1.0289 | 2.0 | 16 | 0.8889 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 83} | {'precision': 0.1986754966887417, 'recall': 0.43902439024390244, 'f1': 0.2735562310030395, 'number': 205} | {'precision': 0.17155756207674944, 'recall': 0.329004329004329, 'f1': 0.22551928783382788, 'number': 231} | 0.1853 | 0.3198 | 0.2346 | 0.6935 |
|
62 |
+
| 0.8399 | 3.0 | 24 | 0.7179 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 83} | {'precision': 0.2890855457227139, 'recall': 0.47804878048780486, 'f1': 0.36029411764705876, 'number': 205} | {'precision': 0.2375366568914956, 'recall': 0.35064935064935066, 'f1': 0.28321678321678323, 'number': 231} | 0.2602 | 0.3449 | 0.2966 | 0.7429 |
|
63 |
+
| 0.7069 | 4.0 | 32 | 0.6412 | {'precision': 0.13636363636363635, 'recall': 0.03614457831325301, 'f1': 0.05714285714285714, 'number': 83} | {'precision': 0.37318840579710144, 'recall': 0.5024390243902439, 'f1': 0.4282744282744283, 'number': 205} | {'precision': 0.3356164383561644, 'recall': 0.42424242424242425, 'f1': 0.37476099426386233, 'number': 231} | 0.3458 | 0.3931 | 0.3679 | 0.7591 |
|
64 |
+
| 0.5901 | 5.0 | 40 | 0.6059 | {'precision': 0.2564102564102564, 'recall': 0.12048192771084337, 'f1': 0.1639344262295082, 'number': 83} | {'precision': 0.3925925925925926, 'recall': 0.5170731707317073, 'f1': 0.4463157894736842, 'number': 205} | {'precision': 0.3726235741444867, 'recall': 0.42424242424242425, 'f1': 0.3967611336032389, 'number': 231} | 0.3741 | 0.4123 | 0.3923 | 0.7735 |
|
65 |
+
| 0.5121 | 6.0 | 48 | 0.5797 | {'precision': 0.3269230769230769, 'recall': 0.20481927710843373, 'f1': 0.2518518518518518, 'number': 83} | {'precision': 0.4351145038167939, 'recall': 0.5560975609756098, 'f1': 0.48822269807280516, 'number': 205} | {'precision': 0.3527272727272727, 'recall': 0.4199134199134199, 'f1': 0.383399209486166, 'number': 231} | 0.3871 | 0.4393 | 0.4116 | 0.7865 |
|
66 |
+
| 0.4503 | 7.0 | 56 | 0.5941 | {'precision': 0.36, 'recall': 0.21686746987951808, 'f1': 0.2706766917293233, 'number': 83} | {'precision': 0.4474708171206226, 'recall': 0.5609756097560976, 'f1': 0.4978354978354979, 'number': 205} | {'precision': 0.3619402985074627, 'recall': 0.4199134199134199, 'f1': 0.38877755511022044, 'number': 231} | 0.4 | 0.4432 | 0.4205 | 0.7799 |
|
67 |
+
| 0.4114 | 8.0 | 64 | 0.5924 | {'precision': 0.38, 'recall': 0.2289156626506024, 'f1': 0.28571428571428575, 'number': 83} | {'precision': 0.4453125, 'recall': 0.5560975609756098, 'f1': 0.4945770065075922, 'number': 205} | {'precision': 0.3656716417910448, 'recall': 0.42424242424242425, 'f1': 0.39278557114228463, 'number': 231} | 0.4024 | 0.4451 | 0.4227 | 0.7827 |
|
68 |
+
| 0.3935 | 9.0 | 72 | 0.5883 | {'precision': 0.3877551020408163, 'recall': 0.2289156626506024, 'f1': 0.2878787878787879, 'number': 83} | {'precision': 0.4581673306772908, 'recall': 0.5609756097560976, 'f1': 0.5043859649122806, 'number': 205} | {'precision': 0.36981132075471695, 'recall': 0.42424242424242425, 'f1': 0.3951612903225806, 'number': 231} | 0.4106 | 0.4470 | 0.4280 | 0.7852 |
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
|
71 |
### Framework versions
|
logs/events.out.tfevents.1741602158.DESKTOP-HA84SVN.75042.7
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c79c0d6bd52e55ff3075ade1d5a4ff5a270c6be9caf88181e4b0874dc14303a
|
3 |
+
size 11870
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 450548984
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ecffb48813d603e0a7089eebc161f236d5463ab79ea4c3946e3838a8df65432b
|
3 |
size 450548984
|