pabloma09 commited on
Commit
93e52ab
·
verified ·
1 Parent(s): 1f5abbf

End of training

Browse files
README.md CHANGED
@@ -18,14 +18,14 @@ should probably proofread and complete it, then remove this comment. -->
18
 
19
  This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
20
  It achieves the following results on the evaluation set:
21
- - Loss: 0.6561
22
- - Eader: {'precision': 0.3770491803278688, 'recall': 0.27710843373493976, 'f1': 0.3194444444444444, 'number': 83}
23
- - Nswer: {'precision': 0.5213675213675214, 'recall': 0.5951219512195122, 'f1': 0.5558086560364465, 'number': 205}
24
- - Uestion: {'precision': 0.3722627737226277, 'recall': 0.44155844155844154, 'f1': 0.40396039603960393, 'number': 231}
25
- - Overall Precision: 0.4341
26
- - Overall Recall: 0.4759
27
- - Overall F1: 0.4540
28
- - Overall Accuracy: 0.7927
29
 
30
  ## Model description
31
 
@@ -50,28 +50,22 @@ The following hyperparameters were used during training:
50
  - seed: 42
51
  - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
52
  - lr_scheduler_type: linear
53
- - num_epochs: 15
54
  - mixed_precision_training: Native AMP
55
 
56
  ### Training results
57
 
58
- | Training Loss | Epoch | Step | Validation Loss | Eader | Nswer | Uestion | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
59
- |:-------------:|:-----:|:----:|:---------------:|:----------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
60
- | 1.2996 | 1.0 | 8 | 1.0787 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 83} | {'precision': 0.0748502994011976, 'recall': 0.24390243902439024, 'f1': 0.11454753722794961, 'number': 205} | {'precision': 0.0704647676161919, 'recall': 0.20346320346320346, 'f1': 0.10467706013363029, 'number': 231} | 0.0727 | 0.1869 | 0.1046 | 0.6075 |
61
- | 1.0224 | 2.0 | 16 | 0.8740 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 83} | {'precision': 0.20823798627002288, 'recall': 0.44390243902439025, 'f1': 0.2834890965732087, 'number': 205} | {'precision': 0.17551963048498845, 'recall': 0.329004329004329, 'f1': 0.2289156626506024, 'number': 231} | 0.1920 | 0.3218 | 0.2405 | 0.7001 |
62
- | 0.8193 | 3.0 | 24 | 0.6924 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 83} | {'precision': 0.310126582278481, 'recall': 0.47804878048780486, 'f1': 0.3761996161228407, 'number': 205} | {'precision': 0.25671641791044775, 'recall': 0.3722943722943723, 'f1': 0.30388692579505294, 'number': 231} | 0.2759 | 0.3545 | 0.3103 | 0.7519 |
63
- | 0.6764 | 4.0 | 32 | 0.6312 | {'precision': 0.14285714285714285, 'recall': 0.04819277108433735, 'f1': 0.07207207207207209, 'number': 83} | {'precision': 0.3914590747330961, 'recall': 0.5365853658536586, 'f1': 0.45267489711934156, 'number': 205} | {'precision': 0.36, 'recall': 0.42857142857142855, 'f1': 0.391304347826087, 'number': 231} | 0.3647 | 0.4104 | 0.3862 | 0.7634 |
64
- | 0.5456 | 5.0 | 40 | 0.5856 | {'precision': 0.3, 'recall': 0.18072289156626506, 'f1': 0.2255639097744361, 'number': 83} | {'precision': 0.42424242424242425, 'recall': 0.5463414634146342, 'f1': 0.47761194029850745, 'number': 205} | {'precision': 0.38022813688212925, 'recall': 0.4329004329004329, 'f1': 0.4048582995951417, 'number': 231} | 0.3934 | 0.4374 | 0.4142 | 0.7846 |
65
- | 0.4547 | 6.0 | 48 | 0.5899 | {'precision': 0.4074074074074074, 'recall': 0.26506024096385544, 'f1': 0.32116788321167883, 'number': 83} | {'precision': 0.44129554655870445, 'recall': 0.5317073170731708, 'f1': 0.4823008849557522, 'number': 205} | {'precision': 0.35094339622641507, 'recall': 0.4025974025974026, 'f1': 0.37500000000000006, 'number': 231} | 0.3958 | 0.4316 | 0.4129 | 0.7827 |
66
- | 0.3815 | 7.0 | 56 | 0.5921 | {'precision': 0.3888888888888889, 'recall': 0.25301204819277107, 'f1': 0.3065693430656934, 'number': 83} | {'precision': 0.483739837398374, 'recall': 0.5804878048780487, 'f1': 0.5277161862527716, 'number': 205} | {'precision': 0.34657039711191334, 'recall': 0.4155844155844156, 'f1': 0.3779527559055118, 'number': 231} | 0.4090 | 0.4547 | 0.4307 | 0.7893 |
67
- | 0.324 | 8.0 | 64 | 0.5872 | {'precision': 0.5, 'recall': 0.26506024096385544, 'f1': 0.3464566929133859, 'number': 83} | {'precision': 0.4957983193277311, 'recall': 0.5756097560975609, 'f1': 0.5327313769751693, 'number': 205} | {'precision': 0.39543726235741444, 'recall': 0.45021645021645024, 'f1': 0.42105263157894735, 'number': 231} | 0.4477 | 0.4701 | 0.4586 | 0.7989 |
68
- | 0.284 | 9.0 | 72 | 0.6026 | {'precision': 0.3968253968253968, 'recall': 0.30120481927710846, 'f1': 0.34246575342465757, 'number': 83} | {'precision': 0.4717741935483871, 'recall': 0.5707317073170731, 'f1': 0.5165562913907285, 'number': 205} | {'precision': 0.35789473684210527, 'recall': 0.44155844155844154, 'f1': 0.39534883720930236, 'number': 231} | 0.4094 | 0.4701 | 0.4377 | 0.7897 |
69
- | 0.249 | 10.0 | 80 | 0.6137 | {'precision': 0.4423076923076923, 'recall': 0.27710843373493976, 'f1': 0.34074074074074073, 'number': 83} | {'precision': 0.5041322314049587, 'recall': 0.5951219512195122, 'f1': 0.5458612975391499, 'number': 205} | {'precision': 0.3607142857142857, 'recall': 0.43722943722943725, 'f1': 0.39530332681017616, 'number': 231} | 0.4286 | 0.4740 | 0.4501 | 0.7981 |
70
- | 0.2288 | 11.0 | 88 | 0.6367 | {'precision': 0.38571428571428573, 'recall': 0.3253012048192771, 'f1': 0.35294117647058826, 'number': 83} | {'precision': 0.48717948717948717, 'recall': 0.5560975609756098, 'f1': 0.5193621867881548, 'number': 205} | {'precision': 0.38267148014440433, 'recall': 0.4588744588744589, 'f1': 0.4173228346456693, 'number': 231} | 0.4251 | 0.4759 | 0.4491 | 0.7912 |
71
- | 0.2031 | 12.0 | 96 | 0.6401 | {'precision': 0.46, 'recall': 0.27710843373493976, 'f1': 0.3458646616541353, 'number': 83} | {'precision': 0.497907949790795, 'recall': 0.5804878048780487, 'f1': 0.536036036036036, 'number': 205} | {'precision': 0.3800738007380074, 'recall': 0.4458874458874459, 'f1': 0.4103585657370518, 'number': 231} | 0.4375 | 0.4721 | 0.4541 | 0.7985 |
72
- | 0.193 | 13.0 | 104 | 0.6539 | {'precision': 0.37142857142857144, 'recall': 0.3132530120481928, 'f1': 0.33986928104575165, 'number': 83} | {'precision': 0.5321100917431193, 'recall': 0.5658536585365853, 'f1': 0.5484633569739952, 'number': 205} | {'precision': 0.3969465648854962, 'recall': 0.45021645021645024, 'f1': 0.4219066937119675, 'number': 231} | 0.4473 | 0.4740 | 0.4602 | 0.7904 |
73
- | 0.1895 | 14.0 | 112 | 0.6557 | {'precision': 0.39344262295081966, 'recall': 0.2891566265060241, 'f1': 0.3333333333333333, 'number': 83} | {'precision': 0.5429864253393665, 'recall': 0.5853658536585366, 'f1': 0.5633802816901408, 'number': 205} | {'precision': 0.3916349809885932, 'recall': 0.4458874458874459, 'f1': 0.41700404858299595, 'number': 231} | 0.4532 | 0.4759 | 0.4643 | 0.7904 |
74
- | 0.1775 | 15.0 | 120 | 0.6561 | {'precision': 0.3770491803278688, 'recall': 0.27710843373493976, 'f1': 0.3194444444444444, 'number': 83} | {'precision': 0.5213675213675214, 'recall': 0.5951219512195122, 'f1': 0.5558086560364465, 'number': 205} | {'precision': 0.3722627737226277, 'recall': 0.44155844155844154, 'f1': 0.40396039603960393, 'number': 231} | 0.4341 | 0.4759 | 0.4540 | 0.7927 |
75
 
76
 
77
  ### Framework versions
 
18
 
19
  This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
20
  It achieves the following results on the evaluation set:
21
+ - Loss: 0.5883
22
+ - Eader: {'precision': 0.3877551020408163, 'recall': 0.2289156626506024, 'f1': 0.2878787878787879, 'number': 83}
23
+ - Nswer: {'precision': 0.4581673306772908, 'recall': 0.5609756097560976, 'f1': 0.5043859649122806, 'number': 205}
24
+ - Uestion: {'precision': 0.36981132075471695, 'recall': 0.42424242424242425, 'f1': 0.3951612903225806, 'number': 231}
25
+ - Overall Precision: 0.4106
26
+ - Overall Recall: 0.4470
27
+ - Overall F1: 0.4280
28
+ - Overall Accuracy: 0.7852
29
 
30
  ## Model description
31
 
 
50
  - seed: 42
51
  - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
52
  - lr_scheduler_type: linear
53
+ - num_epochs: 9
54
  - mixed_precision_training: Native AMP
55
 
56
  ### Training results
57
 
58
+ | Training Loss | Epoch | Step | Validation Loss | Eader | Nswer | Uestion | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
59
+ |:-------------:|:-----:|:----:|:---------------:|:----------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
60
+ | 1.3004 | 1.0 | 8 | 1.0817 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 83} | {'precision': 0.07280832095096583, 'recall': 0.23902439024390243, 'f1': 0.11161731207289294, 'number': 205} | {'precision': 0.06845238095238096, 'recall': 0.19913419913419914, 'f1': 0.1018826135105205, 'number': 231} | 0.0706 | 0.1830 | 0.1019 | 0.6047 |
61
+ | 1.0289 | 2.0 | 16 | 0.8889 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 83} | {'precision': 0.1986754966887417, 'recall': 0.43902439024390244, 'f1': 0.2735562310030395, 'number': 205} | {'precision': 0.17155756207674944, 'recall': 0.329004329004329, 'f1': 0.22551928783382788, 'number': 231} | 0.1853 | 0.3198 | 0.2346 | 0.6935 |
62
+ | 0.8399 | 3.0 | 24 | 0.7179 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 83} | {'precision': 0.2890855457227139, 'recall': 0.47804878048780486, 'f1': 0.36029411764705876, 'number': 205} | {'precision': 0.2375366568914956, 'recall': 0.35064935064935066, 'f1': 0.28321678321678323, 'number': 231} | 0.2602 | 0.3449 | 0.2966 | 0.7429 |
63
+ | 0.7069 | 4.0 | 32 | 0.6412 | {'precision': 0.13636363636363635, 'recall': 0.03614457831325301, 'f1': 0.05714285714285714, 'number': 83} | {'precision': 0.37318840579710144, 'recall': 0.5024390243902439, 'f1': 0.4282744282744283, 'number': 205} | {'precision': 0.3356164383561644, 'recall': 0.42424242424242425, 'f1': 0.37476099426386233, 'number': 231} | 0.3458 | 0.3931 | 0.3679 | 0.7591 |
64
+ | 0.5901 | 5.0 | 40 | 0.6059 | {'precision': 0.2564102564102564, 'recall': 0.12048192771084337, 'f1': 0.1639344262295082, 'number': 83} | {'precision': 0.3925925925925926, 'recall': 0.5170731707317073, 'f1': 0.4463157894736842, 'number': 205} | {'precision': 0.3726235741444867, 'recall': 0.42424242424242425, 'f1': 0.3967611336032389, 'number': 231} | 0.3741 | 0.4123 | 0.3923 | 0.7735 |
65
+ | 0.5121 | 6.0 | 48 | 0.5797 | {'precision': 0.3269230769230769, 'recall': 0.20481927710843373, 'f1': 0.2518518518518518, 'number': 83} | {'precision': 0.4351145038167939, 'recall': 0.5560975609756098, 'f1': 0.48822269807280516, 'number': 205} | {'precision': 0.3527272727272727, 'recall': 0.4199134199134199, 'f1': 0.383399209486166, 'number': 231} | 0.3871 | 0.4393 | 0.4116 | 0.7865 |
66
+ | 0.4503 | 7.0 | 56 | 0.5941 | {'precision': 0.36, 'recall': 0.21686746987951808, 'f1': 0.2706766917293233, 'number': 83} | {'precision': 0.4474708171206226, 'recall': 0.5609756097560976, 'f1': 0.4978354978354979, 'number': 205} | {'precision': 0.3619402985074627, 'recall': 0.4199134199134199, 'f1': 0.38877755511022044, 'number': 231} | 0.4 | 0.4432 | 0.4205 | 0.7799 |
67
+ | 0.4114 | 8.0 | 64 | 0.5924 | {'precision': 0.38, 'recall': 0.2289156626506024, 'f1': 0.28571428571428575, 'number': 83} | {'precision': 0.4453125, 'recall': 0.5560975609756098, 'f1': 0.4945770065075922, 'number': 205} | {'precision': 0.3656716417910448, 'recall': 0.42424242424242425, 'f1': 0.39278557114228463, 'number': 231} | 0.4024 | 0.4451 | 0.4227 | 0.7827 |
68
+ | 0.3935 | 9.0 | 72 | 0.5883 | {'precision': 0.3877551020408163, 'recall': 0.2289156626506024, 'f1': 0.2878787878787879, 'number': 83} | {'precision': 0.4581673306772908, 'recall': 0.5609756097560976, 'f1': 0.5043859649122806, 'number': 205} | {'precision': 0.36981132075471695, 'recall': 0.42424242424242425, 'f1': 0.3951612903225806, 'number': 231} | 0.4106 | 0.4470 | 0.4280 | 0.7852 |
 
 
 
 
 
 
69
 
70
 
71
  ### Framework versions
logs/events.out.tfevents.1741602158.DESKTOP-HA84SVN.75042.7 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e8b18e1a839fa67a354cdb2653ced9a978767dca5610162523f486bbde2486d0
3
- size 8012
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c79c0d6bd52e55ff3075ade1d5a4ff5a270c6be9caf88181e4b0874dc14303a
3
+ size 11870
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:8548c6a165a920347b543051f22695e88214d783a1163fc8743d04c2f369a5de
3
  size 450548984
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ecffb48813d603e0a7089eebc161f236d5463ab79ea4c3946e3838a8df65432b
3
  size 450548984