pabloma09 commited on
Commit
25c6daa
·
verified ·
1 Parent(s): f6084f2

End of training

Browse files
README.md ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: mit
4
+ base_model: microsoft/layoutlm-base-uncased
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - funsd
9
+ model-index:
10
+ - name: layoutlm-FUNSD-only
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # layoutlm-FUNSD-only
18
+
19
+ This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.6561
22
+ - Eader: {'precision': 0.3770491803278688, 'recall': 0.27710843373493976, 'f1': 0.3194444444444444, 'number': 83}
23
+ - Nswer: {'precision': 0.5213675213675214, 'recall': 0.5951219512195122, 'f1': 0.5558086560364465, 'number': 205}
24
+ - Uestion: {'precision': 0.3722627737226277, 'recall': 0.44155844155844154, 'f1': 0.40396039603960393, 'number': 231}
25
+ - Overall Precision: 0.4341
26
+ - Overall Recall: 0.4759
27
+ - Overall F1: 0.4540
28
+ - Overall Accuracy: 0.7927
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 3e-05
48
+ - train_batch_size: 16
49
+ - eval_batch_size: 8
50
+ - seed: 42
51
+ - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
52
+ - lr_scheduler_type: linear
53
+ - num_epochs: 15
54
+ - mixed_precision_training: Native AMP
55
+
56
+ ### Training results
57
+
58
+ | Training Loss | Epoch | Step | Validation Loss | Eader | Nswer | Uestion | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
59
+ |:-------------:|:-----:|:----:|:---------------:|:----------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
60
+ | 1.2996 | 1.0 | 8 | 1.0787 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 83} | {'precision': 0.0748502994011976, 'recall': 0.24390243902439024, 'f1': 0.11454753722794961, 'number': 205} | {'precision': 0.0704647676161919, 'recall': 0.20346320346320346, 'f1': 0.10467706013363029, 'number': 231} | 0.0727 | 0.1869 | 0.1046 | 0.6075 |
61
+ | 1.0224 | 2.0 | 16 | 0.8740 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 83} | {'precision': 0.20823798627002288, 'recall': 0.44390243902439025, 'f1': 0.2834890965732087, 'number': 205} | {'precision': 0.17551963048498845, 'recall': 0.329004329004329, 'f1': 0.2289156626506024, 'number': 231} | 0.1920 | 0.3218 | 0.2405 | 0.7001 |
62
+ | 0.8193 | 3.0 | 24 | 0.6924 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 83} | {'precision': 0.310126582278481, 'recall': 0.47804878048780486, 'f1': 0.3761996161228407, 'number': 205} | {'precision': 0.25671641791044775, 'recall': 0.3722943722943723, 'f1': 0.30388692579505294, 'number': 231} | 0.2759 | 0.3545 | 0.3103 | 0.7519 |
63
+ | 0.6764 | 4.0 | 32 | 0.6312 | {'precision': 0.14285714285714285, 'recall': 0.04819277108433735, 'f1': 0.07207207207207209, 'number': 83} | {'precision': 0.3914590747330961, 'recall': 0.5365853658536586, 'f1': 0.45267489711934156, 'number': 205} | {'precision': 0.36, 'recall': 0.42857142857142855, 'f1': 0.391304347826087, 'number': 231} | 0.3647 | 0.4104 | 0.3862 | 0.7634 |
64
+ | 0.5456 | 5.0 | 40 | 0.5856 | {'precision': 0.3, 'recall': 0.18072289156626506, 'f1': 0.2255639097744361, 'number': 83} | {'precision': 0.42424242424242425, 'recall': 0.5463414634146342, 'f1': 0.47761194029850745, 'number': 205} | {'precision': 0.38022813688212925, 'recall': 0.4329004329004329, 'f1': 0.4048582995951417, 'number': 231} | 0.3934 | 0.4374 | 0.4142 | 0.7846 |
65
+ | 0.4547 | 6.0 | 48 | 0.5899 | {'precision': 0.4074074074074074, 'recall': 0.26506024096385544, 'f1': 0.32116788321167883, 'number': 83} | {'precision': 0.44129554655870445, 'recall': 0.5317073170731708, 'f1': 0.4823008849557522, 'number': 205} | {'precision': 0.35094339622641507, 'recall': 0.4025974025974026, 'f1': 0.37500000000000006, 'number': 231} | 0.3958 | 0.4316 | 0.4129 | 0.7827 |
66
+ | 0.3815 | 7.0 | 56 | 0.5921 | {'precision': 0.3888888888888889, 'recall': 0.25301204819277107, 'f1': 0.3065693430656934, 'number': 83} | {'precision': 0.483739837398374, 'recall': 0.5804878048780487, 'f1': 0.5277161862527716, 'number': 205} | {'precision': 0.34657039711191334, 'recall': 0.4155844155844156, 'f1': 0.3779527559055118, 'number': 231} | 0.4090 | 0.4547 | 0.4307 | 0.7893 |
67
+ | 0.324 | 8.0 | 64 | 0.5872 | {'precision': 0.5, 'recall': 0.26506024096385544, 'f1': 0.3464566929133859, 'number': 83} | {'precision': 0.4957983193277311, 'recall': 0.5756097560975609, 'f1': 0.5327313769751693, 'number': 205} | {'precision': 0.39543726235741444, 'recall': 0.45021645021645024, 'f1': 0.42105263157894735, 'number': 231} | 0.4477 | 0.4701 | 0.4586 | 0.7989 |
68
+ | 0.284 | 9.0 | 72 | 0.6026 | {'precision': 0.3968253968253968, 'recall': 0.30120481927710846, 'f1': 0.34246575342465757, 'number': 83} | {'precision': 0.4717741935483871, 'recall': 0.5707317073170731, 'f1': 0.5165562913907285, 'number': 205} | {'precision': 0.35789473684210527, 'recall': 0.44155844155844154, 'f1': 0.39534883720930236, 'number': 231} | 0.4094 | 0.4701 | 0.4377 | 0.7897 |
69
+ | 0.249 | 10.0 | 80 | 0.6137 | {'precision': 0.4423076923076923, 'recall': 0.27710843373493976, 'f1': 0.34074074074074073, 'number': 83} | {'precision': 0.5041322314049587, 'recall': 0.5951219512195122, 'f1': 0.5458612975391499, 'number': 205} | {'precision': 0.3607142857142857, 'recall': 0.43722943722943725, 'f1': 0.39530332681017616, 'number': 231} | 0.4286 | 0.4740 | 0.4501 | 0.7981 |
70
+ | 0.2288 | 11.0 | 88 | 0.6367 | {'precision': 0.38571428571428573, 'recall': 0.3253012048192771, 'f1': 0.35294117647058826, 'number': 83} | {'precision': 0.48717948717948717, 'recall': 0.5560975609756098, 'f1': 0.5193621867881548, 'number': 205} | {'precision': 0.38267148014440433, 'recall': 0.4588744588744589, 'f1': 0.4173228346456693, 'number': 231} | 0.4251 | 0.4759 | 0.4491 | 0.7912 |
71
+ | 0.2031 | 12.0 | 96 | 0.6401 | {'precision': 0.46, 'recall': 0.27710843373493976, 'f1': 0.3458646616541353, 'number': 83} | {'precision': 0.497907949790795, 'recall': 0.5804878048780487, 'f1': 0.536036036036036, 'number': 205} | {'precision': 0.3800738007380074, 'recall': 0.4458874458874459, 'f1': 0.4103585657370518, 'number': 231} | 0.4375 | 0.4721 | 0.4541 | 0.7985 |
72
+ | 0.193 | 13.0 | 104 | 0.6539 | {'precision': 0.37142857142857144, 'recall': 0.3132530120481928, 'f1': 0.33986928104575165, 'number': 83} | {'precision': 0.5321100917431193, 'recall': 0.5658536585365853, 'f1': 0.5484633569739952, 'number': 205} | {'precision': 0.3969465648854962, 'recall': 0.45021645021645024, 'f1': 0.4219066937119675, 'number': 231} | 0.4473 | 0.4740 | 0.4602 | 0.7904 |
73
+ | 0.1895 | 14.0 | 112 | 0.6557 | {'precision': 0.39344262295081966, 'recall': 0.2891566265060241, 'f1': 0.3333333333333333, 'number': 83} | {'precision': 0.5429864253393665, 'recall': 0.5853658536585366, 'f1': 0.5633802816901408, 'number': 205} | {'precision': 0.3916349809885932, 'recall': 0.4458874458874459, 'f1': 0.41700404858299595, 'number': 231} | 0.4532 | 0.4759 | 0.4643 | 0.7904 |
74
+ | 0.1775 | 15.0 | 120 | 0.6561 | {'precision': 0.3770491803278688, 'recall': 0.27710843373493976, 'f1': 0.3194444444444444, 'number': 83} | {'precision': 0.5213675213675214, 'recall': 0.5951219512195122, 'f1': 0.5558086560364465, 'number': 205} | {'precision': 0.3722627737226277, 'recall': 0.44155844155844154, 'f1': 0.40396039603960393, 'number': 231} | 0.4341 | 0.4759 | 0.4540 | 0.7927 |
75
+
76
+
77
+ ### Framework versions
78
+
79
+ - Transformers 4.49.0
80
+ - Pytorch 2.6.0+cu124
81
+ - Datasets 3.3.2
82
+ - Tokenizers 0.21.0
logs/events.out.tfevents.1741598052.DESKTOP-HA84SVN.75042.6 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:63c1692d151f79c4b292807117dd095fe75a485380187487fbd72f3d5cd11146
3
- size 15033
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c87a05e00a869a7abebe21f6c5f9678ed7a176b9283465e099f9f87883f7c75a
3
+ size 16083
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:fb9af99fcd2593ac6bb65cf4f622ffe20f8f04ad1d9dd54e81e32909f9133b3f
3
  size 450548984
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:619716817d5ca5852af180f91043e76dbc2d4ee8a54fb61d15ca6242ea3095be
3
  size 450548984
preprocessor_config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "apply_ocr": true,
3
+ "do_resize": true,
4
+ "image_processor_type": "LayoutLMv2ImageProcessor",
5
+ "ocr_lang": null,
6
+ "processor_class": "LayoutLMv2Processor",
7
+ "resample": 2,
8
+ "size": {
9
+ "height": 224,
10
+ "width": 224
11
+ },
12
+ "tesseract_config": ""
13
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "additional_special_tokens": [],
45
+ "apply_ocr": false,
46
+ "clean_up_tokenization_spaces": false,
47
+ "cls_token": "[CLS]",
48
+ "cls_token_box": [
49
+ 0,
50
+ 0,
51
+ 0,
52
+ 0
53
+ ],
54
+ "do_basic_tokenize": true,
55
+ "do_lower_case": true,
56
+ "extra_special_tokens": {},
57
+ "mask_token": "[MASK]",
58
+ "model_max_length": 512,
59
+ "never_split": null,
60
+ "only_label_first_subword": true,
61
+ "pad_token": "[PAD]",
62
+ "pad_token_box": [
63
+ 0,
64
+ 0,
65
+ 0,
66
+ 0
67
+ ],
68
+ "pad_token_label": -100,
69
+ "processor_class": "LayoutLMv2Processor",
70
+ "sep_token": "[SEP]",
71
+ "sep_token_box": [
72
+ 1000,
73
+ 1000,
74
+ 1000,
75
+ 1000
76
+ ],
77
+ "strip_accents": null,
78
+ "tokenize_chinese_chars": true,
79
+ "tokenizer_class": "LayoutLMv2Tokenizer",
80
+ "unk_token": "[UNK]"
81
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff