--- base_model: dmis-lab/biobert-base-cased-v1.2 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: BioBERT-full-finetuned-ner-pablo results: [] --- # BioBERT-full-finetuned-ner-pablo This model is a fine-tuned version of [dmis-lab/biobert-base-cased-v1.2](https://huggingface.co/dmis-lab/biobert-base-cased-v1.2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1114 - Precision: 0.7951 - Recall: 0.7809 - F1: 0.7879 - Accuracy: 0.9690 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1541 | 0.9998 | 2608 | 0.1456 | 0.6888 | 0.7147 | 0.7015 | 0.9601 | | 0.1073 | 2.0 | 5217 | 0.1244 | 0.7397 | 0.7450 | 0.7423 | 0.9645 | | 0.0744 | 2.9994 | 7824 | 0.1114 | 0.7951 | 0.7809 | 0.7879 | 0.9690 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0+cu124 - Datasets 2.21.0 - Tokenizers 0.19.1