--- library_name: transformers base_model: dmis-lab/biobert-base-cased-v1.2 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: BioBERT-full-finetuned-ner-pablo results: [] --- # BioBERT-full-finetuned-ner-pablo This model is a fine-tuned version of [dmis-lab/biobert-base-cased-v1.2](https://huggingface.co/dmis-lab/biobert-base-cased-v1.2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1081 - Precision: 0.8057 - Recall: 0.8003 - F1: 0.8030 - Accuracy: 0.9743 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 0.9970 | 252 | 0.0943 | 0.7586 | 0.7859 | 0.7720 | 0.9732 | | 0.1716 | 1.9980 | 505 | 0.0917 | 0.7950 | 0.7738 | 0.7843 | 0.9745 | | 0.1716 | 2.9990 | 758 | 0.0886 | 0.7956 | 0.7925 | 0.7940 | 0.9742 | | 0.0465 | 4.0 | 1011 | 0.0956 | 0.8055 | 0.7971 | 0.8013 | 0.9743 | | 0.0465 | 4.9852 | 1260 | 0.1081 | 0.8057 | 0.8003 | 0.8030 | 0.9743 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1