Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,124 @@
|
|
1 |
-
---
|
2 |
-
license: gemma
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: gemma
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
- hi
|
6 |
+
base_model:
|
7 |
+
- google/gemma-2-2b
|
8 |
+
pipeline_tag: question-answering
|
9 |
+
library_name: keras
|
10 |
+
tags:
|
11 |
+
- legal
|
12 |
+
---
|
13 |
+
|
14 |
+
# Gemma Causal Language Model (GemmaCausalLM)
|
15 |
+
|
16 |
+
This repository contains the configuration and metadata for the `GemmaCausalLM` model, a powerful causal language model designed for advanced NLP tasks such as text generation, dialogue systems, and autoregressive language modeling.
|
17 |
+
|
18 |
+
---
|
19 |
+
|
20 |
+
## Model Overview
|
21 |
+
|
22 |
+
### **1. Core Architecture**
|
23 |
+
The `GemmaCausalLM` combines a robust backbone with an intelligent preprocessor, providing an efficient setup for NLP tasks. Below are its key components:
|
24 |
+
|
25 |
+
#### **Backbone (`GemmaBackbone`):**
|
26 |
+
- **Vocabulary Size**: 256,000 tokens.
|
27 |
+
- **Model Depth**: 26 layers.
|
28 |
+
- **Attention Configuration**:
|
29 |
+
- Query Heads: 8
|
30 |
+
- Key-Value Heads: 4
|
31 |
+
- Head Dimension: 256
|
32 |
+
- Sliding Window Attention: Enabled (window size: 4096).
|
33 |
+
- **Dimensions**:
|
34 |
+
- Hidden Dimension: 2,304
|
35 |
+
- Intermediate Dimension: 18,432
|
36 |
+
- **Normalization and Regularization**:
|
37 |
+
- Layer Normalization (Epsilon: 1e-6).
|
38 |
+
- Post-feedforward and post-attention normalization enabled.
|
39 |
+
- **Soft Caps**:
|
40 |
+
- Final Logit Soft Cap: 30.0
|
41 |
+
- Attention Logit Soft Cap: 50.0
|
42 |
+
- **Dropout**: Disabled.
|
43 |
+
|
44 |
+
#### **Preprocessor (`GemmaCausalLMPreprocessor`):**
|
45 |
+
- **Tokenizer (`GemmaTokenizer`)**:
|
46 |
+
- Configuration File: `tokenizer.json`.
|
47 |
+
- Adds BOS (Beginning of Sequence) and EOS (End of Sequence) tokens.
|
48 |
+
- **Sequence Length**: 512.
|
49 |
+
- **Data Type**:
|
50 |
+
- Float32 for preprocessor computations.
|
51 |
+
- Int32 for tokenized inputs.
|
52 |
+
|
53 |
+
---
|
54 |
+
|
55 |
+
## Metadata
|
56 |
+
|
57 |
+
- **Keras Version**: `3.5.0`
|
58 |
+
- **Keras Hub Version**: `0.17.0`
|
59 |
+
- **Parameter Count**: `2,617,270,528` (2.6 billion parameters).
|
60 |
+
- **Date Saved**: `2024-11-18@13:59:51`
|
61 |
+
|
62 |
+
This metadata ensures reproducibility and provides insights into the complexity of the model.
|
63 |
+
|
64 |
+
---
|
65 |
+
|
66 |
+
## Applications
|
67 |
+
|
68 |
+
This model is designed for tasks requiring causal language modeling, including but not limited to:
|
69 |
+
- Text Generation.
|
70 |
+
- Dialogue Systems.
|
71 |
+
- Autoregressive NLP tasks.
|
72 |
+
|
73 |
+
---
|
74 |
+
|
75 |
+
## Model Files
|
76 |
+
|
77 |
+
- **Backbone Configuration**:
|
78 |
+
The core architecture details for `GemmaBackbone`.
|
79 |
+
- **Preprocessor Configuration**:
|
80 |
+
Tokenization and sequence preprocessing setup.
|
81 |
+
- **Tokenizer File**:
|
82 |
+
`tokenizer.json`.
|
83 |
+
- **Preprocessor File**:
|
84 |
+
`preprocessor.json`.
|
85 |
+
|
86 |
+
---
|
87 |
+
|
88 |
+
## Setup and Usage
|
89 |
+
|
90 |
+
1. **Dependencies**:
|
91 |
+
Ensure the following libraries are installed:
|
92 |
+
```bash
|
93 |
+
pip install keras keras_hub
|
94 |
+
```
|
95 |
+
|
96 |
+
2. **Model Loading**:
|
97 |
+
The model can be loaded as follows:
|
98 |
+
```python
|
99 |
+
from keras_hub.src.models.gemma.gemma_causal_lm import GemmaCausalLM
|
100 |
+
|
101 |
+
model = GemmaCausalLM.from_config(config_file="path/to/config.json")
|
102 |
+
```
|
103 |
+
|
104 |
+
3. **Inference**:
|
105 |
+
Use the preprocessor to tokenize input text and generate predictions with the model.
|
106 |
+
|
107 |
+
```python
|
108 |
+
preprocessor = model.get_preprocessor()
|
109 |
+
inputs = preprocessor.tokenize("Your input text here.")
|
110 |
+
outputs = model.predict(inputs)
|
111 |
+
print(outputs)
|
112 |
+
```
|
113 |
+
|
114 |
+
---
|
115 |
+
|
116 |
+
## Contributions
|
117 |
+
|
118 |
+
Feel free to contribute to this repository by improving configurations, extending functionality, or reporting issues.
|
119 |
+
|
120 |
+
---
|
121 |
+
|
122 |
+
## License
|
123 |
+
|
124 |
+
This project is licensed under the MIT License. See the LICENSE file for details.
|