Upload 2 files
Browse files- configuration_mle.py +46 -0
- modeling_mle.py +413 -0
configuration_mle.py
ADDED
|
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from collections import OrderedDict
|
| 2 |
+
from typing import Any, List, Mapping, Optional
|
| 3 |
+
|
| 4 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 5 |
+
from transformers.onnx import OnnxConfigWithPast, PatchingSpec
|
| 6 |
+
from transformers.utils import logging
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
logger = logging.get_logger(__name__)
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class MLEConfig(PretrainedConfig):
|
| 13 |
+
model_type = "mle"
|
| 14 |
+
|
| 15 |
+
def __init__(
|
| 16 |
+
self,
|
| 17 |
+
in_channels=1,
|
| 18 |
+
num_encoder_layers=[2, 3, 5, 7, 12],
|
| 19 |
+
num_decoder_layers=[7, 5, 3, 2, 2],
|
| 20 |
+
last_hidden_channels=16,
|
| 21 |
+
block_stride_size=4,
|
| 22 |
+
block_kernel_size=3,
|
| 23 |
+
block_patch_size=24,
|
| 24 |
+
upsample_ratio=2,
|
| 25 |
+
batch_norm_eps=1e-3,
|
| 26 |
+
hidden_act="leaky_relu",
|
| 27 |
+
negative_slope=0.2,
|
| 28 |
+
**kwargs,
|
| 29 |
+
):
|
| 30 |
+
self.in_channels = in_channels
|
| 31 |
+
self.num_encoder_layers = num_encoder_layers
|
| 32 |
+
self.num_decoder_layers = num_decoder_layers
|
| 33 |
+
self.last_hidden_channels = last_hidden_channels
|
| 34 |
+
|
| 35 |
+
self.block_stride_size = block_stride_size
|
| 36 |
+
# if isinstance(block_kernel_size, int):
|
| 37 |
+
# self.block_kernel_size = (block_kernel_size, block_kernel_size)
|
| 38 |
+
self.block_kernel_size = block_kernel_size
|
| 39 |
+
self.block_patch_size = block_patch_size
|
| 40 |
+
|
| 41 |
+
self.upsample_ratio = upsample_ratio
|
| 42 |
+
self.batch_norm_eps = batch_norm_eps
|
| 43 |
+
self.hidden_act = hidden_act
|
| 44 |
+
self.negative_slope = negative_slope
|
| 45 |
+
|
| 46 |
+
super().__init__(**kwargs)
|
modeling_mle.py
ADDED
|
@@ -0,0 +1,413 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""PyTorch MLE (Mnaga Line Extraction) model"""
|
| 2 |
+
|
| 3 |
+
from dataclasses import dataclass
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
|
| 8 |
+
from transformers import PreTrainedModel
|
| 9 |
+
from transformers.modeling_outputs import ModelOutput, BaseModelOutput
|
| 10 |
+
from transformers.activations import ACT2FN
|
| 11 |
+
|
| 12 |
+
from .configuration_mle import MLEConfig
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
@dataclass
|
| 16 |
+
class MLEModelOutput(ModelOutput):
|
| 17 |
+
last_hidden_state: torch.FloatTensor | None = None
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
@dataclass
|
| 21 |
+
class MLEForAnimeLineExtractionOutput(ModelOutput):
|
| 22 |
+
last_hidden_state: torch.FloatTensor | None = None
|
| 23 |
+
pixel_values: torch.Tensor | None = None
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
class MLEBatchNorm(nn.Module):
|
| 27 |
+
def __init__(
|
| 28 |
+
self,
|
| 29 |
+
config: MLEConfig,
|
| 30 |
+
in_features: int,
|
| 31 |
+
):
|
| 32 |
+
super().__init__()
|
| 33 |
+
|
| 34 |
+
self.norm = nn.BatchNorm2d(in_features, eps=config.batch_norm_eps)
|
| 35 |
+
# the original model uses leaky_relu
|
| 36 |
+
if config.hidden_act == "leaky_relu":
|
| 37 |
+
self.act_fn = nn.LeakyReLU(negative_slope=config.negative_slope)
|
| 38 |
+
else:
|
| 39 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
| 40 |
+
|
| 41 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 42 |
+
hidden_states = self.norm(hidden_states)
|
| 43 |
+
hidden_states = self.act_fn(hidden_states)
|
| 44 |
+
|
| 45 |
+
return hidden_states
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
class MLEResBlock(nn.Module):
|
| 49 |
+
def __init__(
|
| 50 |
+
self,
|
| 51 |
+
config: MLEConfig,
|
| 52 |
+
in_channels: int,
|
| 53 |
+
out_channels: int,
|
| 54 |
+
stride_size: int,
|
| 55 |
+
):
|
| 56 |
+
super().__init__()
|
| 57 |
+
|
| 58 |
+
self.norm1 = MLEBatchNorm(config, in_channels)
|
| 59 |
+
self.conv1 = nn.Conv2d(
|
| 60 |
+
in_channels,
|
| 61 |
+
out_channels,
|
| 62 |
+
config.block_kernel_size,
|
| 63 |
+
stride=stride_size,
|
| 64 |
+
padding=config.block_kernel_size // 2,
|
| 65 |
+
)
|
| 66 |
+
|
| 67 |
+
self.norm2 = MLEBatchNorm(config, out_channels)
|
| 68 |
+
self.conv2 = nn.Conv2d(
|
| 69 |
+
out_channels,
|
| 70 |
+
out_channels,
|
| 71 |
+
config.block_kernel_size,
|
| 72 |
+
stride=1,
|
| 73 |
+
padding=config.block_kernel_size // 2,
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
if in_channels != out_channels or stride_size != 1:
|
| 77 |
+
self.resize = nn.Conv2d(
|
| 78 |
+
in_channels,
|
| 79 |
+
out_channels,
|
| 80 |
+
kernel_size=1,
|
| 81 |
+
stride=stride_size,
|
| 82 |
+
)
|
| 83 |
+
else:
|
| 84 |
+
self.resize = None
|
| 85 |
+
|
| 86 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 87 |
+
output = self.norm1(hidden_states)
|
| 88 |
+
output = self.conv1(output)
|
| 89 |
+
output = self.norm2(output)
|
| 90 |
+
output = self.conv2(output)
|
| 91 |
+
|
| 92 |
+
if self.resize is not None:
|
| 93 |
+
resized_input = self.resize(hidden_states)
|
| 94 |
+
output += resized_input
|
| 95 |
+
else:
|
| 96 |
+
output += hidden_states
|
| 97 |
+
|
| 98 |
+
return output
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
class MLEEncoderLayer(nn.Module):
|
| 102 |
+
def __init__(
|
| 103 |
+
self,
|
| 104 |
+
config: MLEConfig,
|
| 105 |
+
in_features: int,
|
| 106 |
+
out_features: int,
|
| 107 |
+
num_layers: int,
|
| 108 |
+
stride_sizes: list[int],
|
| 109 |
+
):
|
| 110 |
+
super().__init__()
|
| 111 |
+
|
| 112 |
+
self.blocks = nn.ModuleList(
|
| 113 |
+
[
|
| 114 |
+
MLEResBlock(
|
| 115 |
+
config,
|
| 116 |
+
in_channels=in_features if i == 0 else out_features,
|
| 117 |
+
out_channels=out_features,
|
| 118 |
+
stride_size=stride_sizes[i],
|
| 119 |
+
)
|
| 120 |
+
for i in range(num_layers)
|
| 121 |
+
]
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 125 |
+
for block in self.blocks:
|
| 126 |
+
hidden_states = block(hidden_states)
|
| 127 |
+
return hidden_states
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
class MLEEncoder(nn.Module):
|
| 131 |
+
def __init__(
|
| 132 |
+
self,
|
| 133 |
+
config: MLEConfig,
|
| 134 |
+
):
|
| 135 |
+
super().__init__()
|
| 136 |
+
|
| 137 |
+
self.layers = nn.ModuleList(
|
| 138 |
+
[
|
| 139 |
+
MLEEncoderLayer(
|
| 140 |
+
config,
|
| 141 |
+
in_features=(
|
| 142 |
+
config.in_channels
|
| 143 |
+
if i == 0
|
| 144 |
+
else config.in_channels
|
| 145 |
+
* config.block_patch_size
|
| 146 |
+
* (config.upsample_ratio ** (i - 1))
|
| 147 |
+
),
|
| 148 |
+
out_features=config.in_channels
|
| 149 |
+
* config.block_patch_size
|
| 150 |
+
* (config.upsample_ratio**i),
|
| 151 |
+
num_layers=num_layers,
|
| 152 |
+
stride_sizes=(
|
| 153 |
+
[
|
| 154 |
+
1 if i_layer < num_layers - 1 else 2
|
| 155 |
+
for i_layer in range(num_layers)
|
| 156 |
+
]
|
| 157 |
+
if i > 0
|
| 158 |
+
else [1 for _ in range(num_layers)]
|
| 159 |
+
),
|
| 160 |
+
)
|
| 161 |
+
for i, num_layers in enumerate(config.num_encoder_layers)
|
| 162 |
+
]
|
| 163 |
+
)
|
| 164 |
+
|
| 165 |
+
def forward(
|
| 166 |
+
self, hidden_states: torch.Tensor
|
| 167 |
+
) -> tuple[torch.Tensor, tuple[torch.Tensor, ...]]:
|
| 168 |
+
all_hidden_states: tuple[torch.Tensor, ...] = ()
|
| 169 |
+
for layer in self.layers:
|
| 170 |
+
hidden_states = layer(hidden_states)
|
| 171 |
+
all_hidden_states += (hidden_states,)
|
| 172 |
+
return hidden_states, all_hidden_states
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
class MLEUpsampleBlock(nn.Module):
|
| 176 |
+
def __init__(self, config: MLEConfig, in_features: int, out_features: int):
|
| 177 |
+
super().__init__()
|
| 178 |
+
|
| 179 |
+
self.norm = MLEBatchNorm(config, in_features=in_features)
|
| 180 |
+
self.conv = nn.Conv2d(
|
| 181 |
+
in_features,
|
| 182 |
+
out_features,
|
| 183 |
+
config.block_kernel_size,
|
| 184 |
+
stride=1,
|
| 185 |
+
padding=config.block_kernel_size // 2,
|
| 186 |
+
)
|
| 187 |
+
self.upsample = nn.Upsample(scale_factor=config.upsample_ratio)
|
| 188 |
+
|
| 189 |
+
def forward(self, hidden_states: torch.Tensor):
|
| 190 |
+
output = self.norm(hidden_states)
|
| 191 |
+
output = self.conv(output)
|
| 192 |
+
output = self.upsample(output)
|
| 193 |
+
|
| 194 |
+
return output
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
class MLEUpsampleResBlock(nn.Module):
|
| 198 |
+
def __init__(self, config: MLEConfig, in_features: int, out_features: int):
|
| 199 |
+
super().__init__()
|
| 200 |
+
|
| 201 |
+
self.upsample = MLEUpsampleBlock(
|
| 202 |
+
config, in_features=in_features, out_features=out_features
|
| 203 |
+
)
|
| 204 |
+
|
| 205 |
+
self.norm = MLEBatchNorm(config, in_features=out_features)
|
| 206 |
+
self.conv = nn.Conv2d(
|
| 207 |
+
out_features,
|
| 208 |
+
out_features,
|
| 209 |
+
config.block_kernel_size,
|
| 210 |
+
stride=1,
|
| 211 |
+
padding=config.block_kernel_size // 2,
|
| 212 |
+
)
|
| 213 |
+
|
| 214 |
+
if in_features != out_features:
|
| 215 |
+
self.resize = nn.Sequential(
|
| 216 |
+
nn.Conv2d(
|
| 217 |
+
in_features,
|
| 218 |
+
out_features,
|
| 219 |
+
kernel_size=1,
|
| 220 |
+
stride=1,
|
| 221 |
+
),
|
| 222 |
+
nn.Upsample(scale_factor=config.upsample_ratio),
|
| 223 |
+
)
|
| 224 |
+
else:
|
| 225 |
+
self.resize = None
|
| 226 |
+
|
| 227 |
+
def forward(self, hidden_states: torch.Tensor):
|
| 228 |
+
output = self.upsample(hidden_states)
|
| 229 |
+
output = self.norm(output)
|
| 230 |
+
output = self.conv(output)
|
| 231 |
+
|
| 232 |
+
if self.resize is not None:
|
| 233 |
+
output += self.resize(hidden_states)
|
| 234 |
+
|
| 235 |
+
return output
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
class MLEDecoderLayer(nn.Module):
|
| 239 |
+
def __init__(
|
| 240 |
+
self,
|
| 241 |
+
config: MLEConfig,
|
| 242 |
+
in_features: int,
|
| 243 |
+
out_features: int,
|
| 244 |
+
num_layers: int,
|
| 245 |
+
):
|
| 246 |
+
super().__init__()
|
| 247 |
+
|
| 248 |
+
self.blocks = nn.ModuleList(
|
| 249 |
+
[
|
| 250 |
+
(
|
| 251 |
+
MLEResBlock(
|
| 252 |
+
config,
|
| 253 |
+
in_channels=out_features,
|
| 254 |
+
out_channels=out_features,
|
| 255 |
+
stride_size=1,
|
| 256 |
+
)
|
| 257 |
+
if i > 0
|
| 258 |
+
else MLEUpsampleResBlock(
|
| 259 |
+
config,
|
| 260 |
+
in_features=in_features,
|
| 261 |
+
out_features=out_features,
|
| 262 |
+
)
|
| 263 |
+
)
|
| 264 |
+
for i in range(num_layers)
|
| 265 |
+
]
|
| 266 |
+
)
|
| 267 |
+
|
| 268 |
+
def forward(
|
| 269 |
+
self, hidden_states: torch.Tensor, shortcut_states: torch.Tensor
|
| 270 |
+
) -> torch.Tensor:
|
| 271 |
+
for block in self.blocks:
|
| 272 |
+
hidden_states = block(hidden_states)
|
| 273 |
+
|
| 274 |
+
hidden_states += shortcut_states
|
| 275 |
+
|
| 276 |
+
return hidden_states
|
| 277 |
+
|
| 278 |
+
|
| 279 |
+
class MLEDecoderHead(nn.Module):
|
| 280 |
+
def __init__(self, config: MLEConfig, num_layers: int):
|
| 281 |
+
super().__init__()
|
| 282 |
+
|
| 283 |
+
self.layer = MLEEncoderLayer(
|
| 284 |
+
config,
|
| 285 |
+
in_features=config.block_patch_size,
|
| 286 |
+
out_features=config.last_hidden_channels,
|
| 287 |
+
stride_sizes=[1 for _ in range(num_layers)],
|
| 288 |
+
num_layers=num_layers,
|
| 289 |
+
)
|
| 290 |
+
self.norm = MLEBatchNorm(config, in_features=config.last_hidden_channels)
|
| 291 |
+
self.conv = nn.Conv2d(
|
| 292 |
+
config.last_hidden_channels,
|
| 293 |
+
out_channels=1,
|
| 294 |
+
kernel_size=1,
|
| 295 |
+
stride=1,
|
| 296 |
+
)
|
| 297 |
+
|
| 298 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 299 |
+
hidden_states = self.layer(hidden_states)
|
| 300 |
+
hidden_states = self.norm(hidden_states)
|
| 301 |
+
pixel_values = self.conv(hidden_states)
|
| 302 |
+
return pixel_values
|
| 303 |
+
|
| 304 |
+
|
| 305 |
+
class MLEDecoder(nn.Module):
|
| 306 |
+
def __init__(
|
| 307 |
+
self,
|
| 308 |
+
config: MLEConfig,
|
| 309 |
+
):
|
| 310 |
+
super().__init__()
|
| 311 |
+
|
| 312 |
+
encoder_output_channels = (
|
| 313 |
+
config.in_channels
|
| 314 |
+
* config.block_patch_size
|
| 315 |
+
* (config.upsample_ratio ** (len(config.num_encoder_layers) - 1))
|
| 316 |
+
)
|
| 317 |
+
upsample_ratio = config.upsample_ratio
|
| 318 |
+
num_decoder_layers = config.num_decoder_layers
|
| 319 |
+
|
| 320 |
+
self.layers = nn.ModuleList(
|
| 321 |
+
[
|
| 322 |
+
(
|
| 323 |
+
MLEDecoderLayer(
|
| 324 |
+
config,
|
| 325 |
+
in_features=encoder_output_channels // (upsample_ratio**i),
|
| 326 |
+
out_features=encoder_output_channels
|
| 327 |
+
// (upsample_ratio ** (i + 1)),
|
| 328 |
+
num_layers=num_layers,
|
| 329 |
+
)
|
| 330 |
+
if i < len(num_decoder_layers) - 1
|
| 331 |
+
else MLEDecoderHead(
|
| 332 |
+
config,
|
| 333 |
+
num_layers=num_layers,
|
| 334 |
+
)
|
| 335 |
+
)
|
| 336 |
+
for i, num_layers in enumerate(num_decoder_layers)
|
| 337 |
+
]
|
| 338 |
+
)
|
| 339 |
+
|
| 340 |
+
def forward(
|
| 341 |
+
self,
|
| 342 |
+
last_hidden_states: torch.Tensor,
|
| 343 |
+
encoder_hidden_states: tuple[torch.Tensor, ...],
|
| 344 |
+
) -> torch.Tensor:
|
| 345 |
+
hidden_states = last_hidden_states
|
| 346 |
+
num_encoder_hidden_states = len(encoder_hidden_states) # 5
|
| 347 |
+
|
| 348 |
+
for i, layer in enumerate(self.layers):
|
| 349 |
+
if i < len(self.layers) - 1:
|
| 350 |
+
hidden_states = layer(
|
| 351 |
+
hidden_states,
|
| 352 |
+
# 0, 1, 2, 3, 4
|
| 353 |
+
# ↓ ↓ ↓ ↓ ↓
|
| 354 |
+
# 8, 7, 6, 5, 5
|
| 355 |
+
encoder_hidden_states[num_encoder_hidden_states - 2 - i],
|
| 356 |
+
)
|
| 357 |
+
else:
|
| 358 |
+
# decoder head
|
| 359 |
+
hidden_states = layer(hidden_states)
|
| 360 |
+
|
| 361 |
+
return hidden_states
|
| 362 |
+
|
| 363 |
+
|
| 364 |
+
class MLEPretrainedModel(PreTrainedModel):
|
| 365 |
+
config_class = MLEConfig
|
| 366 |
+
base_model_prefix = "model"
|
| 367 |
+
supports_gradient_checkpointing = True
|
| 368 |
+
|
| 369 |
+
|
| 370 |
+
class MLEModel(MLEPretrainedModel):
|
| 371 |
+
def __init__(self, config: MLEConfig):
|
| 372 |
+
super().__init__(config)
|
| 373 |
+
self.config = config
|
| 374 |
+
|
| 375 |
+
self.encoder = MLEEncoder(config)
|
| 376 |
+
self.decoder = MLEDecoder(config)
|
| 377 |
+
|
| 378 |
+
# Initialize weights and apply final processing
|
| 379 |
+
self.post_init()
|
| 380 |
+
|
| 381 |
+
def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
|
| 382 |
+
encoder_output, all_hidden_states = self.encoder(pixel_values)
|
| 383 |
+
decoder_output = self.decoder(encoder_output, all_hidden_states)
|
| 384 |
+
|
| 385 |
+
return decoder_output
|
| 386 |
+
|
| 387 |
+
|
| 388 |
+
class MLEForAnimeLineExtraction(MLEPretrainedModel):
|
| 389 |
+
def __init__(self, config: MLEConfig):
|
| 390 |
+
super().__init__(config)
|
| 391 |
+
|
| 392 |
+
self.model = MLEModel(config)
|
| 393 |
+
|
| 394 |
+
def postprocess(self, output_tensor: torch.Tensor, input_shape: torch.Size):
|
| 395 |
+
pixel_values = output_tensor[0, 0, :, :]
|
| 396 |
+
pixel_values = torch.clip(pixel_values, 0, 255)
|
| 397 |
+
|
| 398 |
+
pixel_values = pixel_values[0 : input_shape[2], 0 : input_shape[3]]
|
| 399 |
+
return pixel_values
|
| 400 |
+
|
| 401 |
+
def forward(
|
| 402 |
+
self, pixel_values: torch.Tensor, return_dict: bool = True
|
| 403 |
+
) -> tuple[torch.Tensor, ...] | MLEForAnimeLineExtractionOutput:
|
| 404 |
+
model_output = self.model(pixel_values)
|
| 405 |
+
|
| 406 |
+
if not return_dict:
|
| 407 |
+
return (model_output, self.postprocess(model_output, pixel_values.shape))
|
| 408 |
+
|
| 409 |
+
else:
|
| 410 |
+
return MLEForAnimeLineExtractionOutput(
|
| 411 |
+
last_hidden_state=model_output,
|
| 412 |
+
pixel_values=self.postprocess(model_output, pixel_values.shape),
|
| 413 |
+
)
|