save model card
Browse files
README.md
CHANGED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: ar
|
3 |
+
datasets:
|
4 |
+
- https://arabicspeech.org/
|
5 |
+
tags:
|
6 |
+
- audio
|
7 |
+
- automatic-speech-recognition
|
8 |
+
- speech
|
9 |
+
- xlsr-fine-tuning-week
|
10 |
+
license: apache-2.0
|
11 |
+
model-index:
|
12 |
+
- name: XLSR Wav2Vec2 Egyptian by Zaid Alyafeai and Othmane Rifki
|
13 |
+
results:
|
14 |
+
- task:
|
15 |
+
name: Speech Recognition
|
16 |
+
type: automatic-speech-recognition
|
17 |
+
dataset:
|
18 |
+
name: arabicspeech.org MGB-3
|
19 |
+
type: arabicspeech.org MGB-3
|
20 |
+
args: {lang_id}
|
21 |
+
metrics:
|
22 |
+
- name: Test WER
|
23 |
+
type: wer
|
24 |
+
value: 55.2
|
25 |
+
---
|
26 |
+
# Wav2Vec2-Large-XLSR-53-Arabic
|
27 |
+
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Egyptian using the [arabicspeech.org MGB-3](https://arabicspeech.org/mgb3-asr/)
|
28 |
+
When using this model, make sure that your speech input is sampled at 16kHz.
|
29 |
+
## Usage
|
30 |
+
The model can be used directly (without a language model) as follows:
|
31 |
+
```python
|
32 |
+
import torch
|
33 |
+
import torchaudio
|
34 |
+
from datasets import load_dataset
|
35 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
36 |
+
dataset = load_dataset("arabic_speech_corpus", split="test")
|
37 |
+
processor = Wav2Vec2Processor.from_pretrained("othrif/wav2vec_test")
|
38 |
+
model = Wav2Vec2ForCTC.from_pretrained("othrif/wav2vec_test")
|
39 |
+
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
40 |
+
# Preprocessing the datasets.
|
41 |
+
# We need to read the aduio files as arrays
|
42 |
+
def speech_file_to_array_fn(batch):
|
43 |
+
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
44 |
+
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
45 |
+
return batch
|
46 |
+
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
47 |
+
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
|
48 |
+
with torch.no_grad():
|
49 |
+
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
50 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
51 |
+
print("Prediction:", processor.batch_decode(predicted_ids))
|
52 |
+
print("Reference:", test_dataset["sentence"][:2])
|
53 |
+
```
|