--- library_name: transformers license: mit base_model: MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: Bert-Contact-NLI results: [] --- # Bert-Contact-NLI This model is a fine-tuned version of [MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7](https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8520 - Model Preparation Time: 0.0063 - Accuracy: 0.7222 - Precision: 0.7086 - Recall: 0.7284 - F1: 0.7134 - Ratio: 0.3611 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Accuracy | Precision | Recall | F1 | Ratio | |:-------------:|:------:|:----:|:---------------:|:----------------------:|:--------:|:---------:|:------:|:------:|:------:| | No log | 0.9895 | 47 | 0.8446 | 0.0063 | 0.6142 | 0.6097 | 0.5667 | 0.5804 | 0.5340 | | No log | 2.0 | 95 | 0.7677 | 0.0063 | 0.6821 | 0.6774 | 0.6708 | 0.6636 | 0.3148 | | No log | 2.9895 | 142 | 0.7705 | 0.0063 | 0.7006 | 0.6919 | 0.6740 | 0.6805 | 0.4043 | | No log | 4.0 | 190 | 0.7969 | 0.0063 | 0.7006 | 0.6787 | 0.7153 | 0.6915 | 0.3951 | | No log | 4.9474 | 235 | 0.8520 | 0.0063 | 0.7222 | 0.7086 | 0.7284 | 0.7134 | 0.3611 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3