Commit
·
b7d7804
1
Parent(s):
c98e5e8
Add requirements and inference
Browse files- pipeline.py +38 -0
- requirements.txt +2 -0
pipeline.py
ADDED
|
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import nltk
|
| 3 |
+
|
| 4 |
+
from torchvision import transforms
|
| 5 |
+
from pytorch_pretrained_biggan import BigGAN, one_hot_from_names, truncated_noise_sample
|
| 6 |
+
|
| 7 |
+
class PreTrainedPipeline():
|
| 8 |
+
def __init__(self, path=""):
|
| 9 |
+
"""
|
| 10 |
+
Initialize model
|
| 11 |
+
"""
|
| 12 |
+
nltk.download('wordnet')
|
| 13 |
+
self.model = BigGAN.from_pretrained(path)
|
| 14 |
+
self.truncation = 0.1
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def __call__(self, inputs: str):
|
| 18 |
+
"""
|
| 19 |
+
Args:
|
| 20 |
+
inputs (:obj:`str`):
|
| 21 |
+
a string containing some text
|
| 22 |
+
Return:
|
| 23 |
+
A :obj:`PIL.Image`. The raw image representation as PIL.
|
| 24 |
+
"""
|
| 25 |
+
class_vector = one_hot_from_names([inputs], batch_size=1)
|
| 26 |
+
if class_vector == None:
|
| 27 |
+
raise ValueError("Input is not in ImageNet")
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
noise_vector = truncated_noise_sample(truncation=truncation, batch_size=1)
|
| 31 |
+
|
| 32 |
+
noise_vector = torch.from_numpy(noise_vector)
|
| 33 |
+
class_vector = torch.from_numpy(class_vector)
|
| 34 |
+
|
| 35 |
+
with torch.no_grad():
|
| 36 |
+
output = model(noise_vector, class_vector, truncation)
|
| 37 |
+
|
| 38 |
+
return transforms.ToPILImage()(output[0])
|
requirements.txt
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
pytorch-pretrained-biggan
|
| 2 |
+
nltk
|