File size: 57,521 Bytes
7cdf421 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 |
import logging
import os.path
from typing import List
import torch
from header import *
import torch.nn.functional as F
from .ImageBind import *
from .ImageBind import data
from .modeling_llama import LlamaForCausalLM
from transformers import StoppingCriteria, StoppingCriteriaList
# from diffusers import StableDiffusionPipeline
from .custom_sd import StableDiffusionPipeline
from .custom_vd import TextToVideoSDPipeline
from .custom_ad import AudioLDMPipeline
from .layers import *
from .common.utils import *
class StoppingCriteriaSub(StoppingCriteria):
def __init__(self, stops: List = None, encounters: int = 1):
super().__init__()
self.stops = stops
self.ENCOUNTERS = encounters
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor):
stop_count = 0
for stop in self.stops:
_stop = torch.tensor(stop).to(input_ids[0].device)
indices = torch.where(_stop[0] == input_ids)
for i in indices:
if len(i) > 0:
if torch.all(input_ids[0][i:i + len(_stop)] == _stop):
stop_count += 1
if stop_count >= self.ENCOUNTERS:
return True
return False
class NextGPTModel(nn.Module):
"""LoRA for LLaMa model"""
def __init__(self, **args):
super(NextGPTModel, self).__init__()
self.args = args
self.max_length = args['max_length']
self.device = torch.cuda.current_device()
self.stage = args['stage']
print('args max_length', args['max_length'])
imagebind_ckpt_path = os.path.join(self.args['pretrained_ckpt_path'], 'imagebind_ckpt',
self.args['imagebind_version'])
print(f'Initializing visual encoder from {imagebind_ckpt_path} ...')
self.visual_encoder, self.visual_hidden_size = \
imagebind_model.imagebind_huge(pretrained=True, store_path=imagebind_ckpt_path)
# free vision encoder
for name, param in self.visual_encoder.named_parameters():
param.requires_grad = False
self.visual_encoder.eval()
print('Visual encoder initialized.')
self.vicuna_ckpt_path = os.path.join(self.args['pretrained_ckpt_path'], 'vicuna_ckpt',
self.args['vicuna_version'])
print(f'Initializing language decoder from {self.vicuna_ckpt_path} ...')
self.llama_model = LlamaForCausalLM.from_pretrained(self.vicuna_ckpt_path)
if self.args.get('freeze_lm'):
print("Freezing the LLaMa ...")
for param in self.llama_model.parameters():
param.requires_grad = False
self.llama_model.eval()
else:
print("Instruct tuning the LLaMa ...")
# add the lora module
peft_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
inference_mode=False,
r=self.args['lora_r'],
lora_alpha=self.args['lora_alpha'],
lora_dropout=self.args['lora_dropout'],
target_modules=['q_proj', 'k_proj', 'v_proj', 'o_proj']
)
self.llama_model = get_peft_model(self.llama_model, peft_config)
self.llama_model.print_trainable_parameters()
print('Language decoder initialized.')
# use the new trained tokenizer
tokenizer_path = self.vicuna_ckpt_path
print(f'Initializing tokenizer from {tokenizer_path} ...')
self.llama_tokenizer = LlamaTokenizer.from_pretrained(tokenizer_path, use_fast=False)
self.llama_tokenizer.pad_token = self.llama_tokenizer.eos_token
self.llama_tokenizer.padding_side = "right"
# self.llama_tokenizer.add_special_tokens({"mask_token": "[MASK]"})
self._add_image_token()
self._add_video_token()
self._add_audio_token()
self.llama_model.resize_token_embeddings(len(self.llama_tokenizer))
print('Tokenizer initialized.')
self.llama_proj = nn.Linear(
self.visual_hidden_size, self.llama_model.config.hidden_size
)
if self.args.get('freeze_input_proj'):
for param in self.llama_proj.parameters():
param.requires_grad = False
self.input_embeddings = self.llama_model.get_input_embeddings()
# the alignment module for LLM-TO-IMAGE
self.sd_ckpt_path = self.args['image_diffusion']
self.gen_text_hidden_fcs = nn.ModuleList([])
for layer_idx in self.args['text_emb_to_img_layers']:
if layer_idx == -1 or layer_idx == self.llama_model.config.num_hidden_layers:
in_dim = self.llama_model.config.hidden_size
self.gen_text_hidden_fcs.append(
TextFcLayer(in_dim, 768, num_input_tokens=self.args['num_gen_img_tokens'],
num_output_tokens=self.args['num_clip_tokens'],
mode=self.args['text_fc_to_img_mode']))
# self.sd_pipe.text_encoder.config.hidden_size
elif layer_idx < self.llama_model.config.num_hidden_layers:
self.gen_text_hidden_fcs.append(
TextFcLayer(self.llama_model.config.hidden_size, 768,
num_input_tokens=self.args['num_gen_img_tokens'],
num_output_tokens=self.args['num_clip_tokens'],
mode=self.args['text_fc_to_img_mode']))
else:
raise ValueError(
f'Embedding of layer {layer_idx} was requested but model only has {self.llama_model.config.num_hidden_layers} layers.')
# the alignment module for LLM-TO-VIDEO
self.vd_ckpt_path = self.args['video_diffusion']
self.gen_text_hidden_fcs_video = nn.ModuleList([])
for layer_idx in self.args['text_emb_to_video_layers']:
if layer_idx == -1 or layer_idx == self.llama_model.config.num_hidden_layers:
in_dim = self.llama_model.config.hidden_size # 4096
self.gen_text_hidden_fcs_video.append(
TextFcLayer(in_dim, 1024, num_input_tokens=self.args['num_gen_video_tokens'],
num_output_tokens=self.args['num_clip_tokens'],
mode=self.args['text_fc_to_video_mode']))
# self.vd_pipe.text_encoder.config.hidden_size
elif layer_idx < self.llama_model.config.num_hidden_layers:
self.gen_text_hidden_fcs_video.append(
TextFcLayer(self.llama_model.config.hidden_size, 1024,
num_input_tokens=self.args['num_gen_video_tokens'],
num_output_tokens=self.args['num_clip_tokens'],
mode=self.args['text_fc_to_video_mode']))
else:
raise ValueError(
f'Embedding of layer {layer_idx} was requested but model only has {self.llama_model.config.num_hidden_layers} layers.')
# the alignment module for LLM-TO-AUDIO
self.ad_ckpt_path = self.args['audio_diffusion']
self.gen_text_hidden_fcs_audio = nn.ModuleList([])
for layer_idx in self.args['text_emb_to_audio_layers']:
if layer_idx == -1 or layer_idx == self.llama_model.config.num_hidden_layers:
in_dim = self.llama_model.config.hidden_size
self.gen_text_hidden_fcs_audio.append(
TextFcLayer(in_dim, 512,
num_input_tokens=self.args['num_gen_audio_tokens'],
num_output_tokens=1,
mode=self.args['text_fc_to_audio_mode']))
# self.ad_pipe.text_encoder.config.projection_dim
elif layer_idx < self.llama_model.config.num_hidden_layers:
self.gen_text_hidden_fcs_audio.append(
TextFcLayer(self.llama_model.config.hidden_size, 512,
num_input_tokens=self.args['num_gen_audio_tokens'],
num_output_tokens=1,
mode=self.args['text_fc_to_audio_mode']))
else:
raise ValueError(
f'Embedding of layer {layer_idx} was requested but model only has {self.llama_model.config.num_hidden_layers} layers.')
if self.args.get('freeze_output_proj'):
for name, param in self.gen_text_hidden_fcs.named_parameters():
param.requires_grad = False
for name, param in self.gen_text_hidden_fcs_video.named_parameters():
param.requires_grad = False
for name, param in self.gen_text_hidden_fcs_audio.named_parameters():
param.requires_grad = False
def _add_image_token(self):
# Add an image token for loss masking (and visualization) purposes.
self.llama_tokenizer.add_tokens(["<Img>"]) # add special image token to tokenizer
self.llama_tokenizer.add_tokens(["</Img>"]) # add special image token to tokenizer
# Add [IMG] tokens to the vocabulary.
self.args['gen_img_token_idx'] = []
for i in range(self.args['num_gen_img_tokens']):
print(f'Adding [IMG{i}] token to vocabulary.')
print(f'Before adding new token, tokenizer("[IMG{i}]") =',
self.llama_tokenizer(f'[IMG{i}]', add_special_tokens=False))
num_added_tokens = self.llama_tokenizer.add_tokens(f'[IMG{i}]')
print(f'After adding {num_added_tokens} new tokens, tokenizer("[IMG{i}]") =',
self.llama_tokenizer(f'[IMG{i}]', add_special_tokens=False))
gen_token_idx = self.llama_tokenizer(f'[IMG{i}]', add_special_tokens=False).input_ids
assert len(gen_token_idx) == 1, gen_token_idx
self.args['gen_img_token_idx'].append(gen_token_idx[0])
def _add_video_token(self):
# self.llama_tokenizer.add_tokens({"<Vid>"}) # add special video token to tokenizer
# self.llama_tokenizer.add_tokens({"</Vid>"}) # add special video token to tokenizer
# Add [VID] tokens to the vocabulary.
self.args['gen_video_token_idx'] = []
for i in range(self.args['num_gen_video_tokens']):
print(f'Adding [VID{i}] token to vocabulary.')
print(f'Before adding new token, tokenizer("[VID{i}]") =',
self.llama_tokenizer(f'[VID{i}]', add_special_tokens=False))
num_added_tokens = self.llama_tokenizer.add_tokens(f'[VID{i}]')
print(f'After adding {num_added_tokens} new tokens, tokenizer("[VID{i}]") =',
self.llama_tokenizer(f'[VID{i}]', add_special_tokens=False))
gen_token_idx = self.llama_tokenizer(f'[VID{i}]', add_special_tokens=False).input_ids
assert len(gen_token_idx) == 1, gen_token_idx
self.args['gen_video_token_idx'].append(gen_token_idx[0])
def _add_audio_token(self):
# self.llama_tokenizer.add_tokens({"<Aud>"}) # add special audio token to tokenizer
# self.llama_tokenizer.add_tokens({"</Aud>"}) # add special audio token to tokenizer
# Add [AUD] tokens to the vocabulary.
self.args['gen_audio_token_idx'] = []
for i in range(self.args['num_gen_audio_tokens']):
print(f'Adding [AUD{i}] token to vocabulary.')
print(f'Before adding new token, tokenizer("[AUD{i}]") =',
self.llama_tokenizer(f'[AUD{i}]', add_special_tokens=False))
num_added_tokens = self.llama_tokenizer.add_tokens(f'[AUD{i}]')
print(f'After adding {num_added_tokens} new tokens, tokenizer("[AUD{i}]") =',
self.llama_tokenizer(f'[AUD{i}]', add_special_tokens=False))
gen_token_idx = self.llama_tokenizer(f'[AUD{i}]', add_special_tokens=False).input_ids
assert len(gen_token_idx) == 1, gen_token_idx
self.args['gen_audio_token_idx'].append(gen_token_idx[0])
def encode_video(self, video_paths):
inputs = {ModalityType.VISION: data.load_and_transform_video_data(video_paths, self.device)}
# convert into visual dtype
inputs = {key: inputs[key].to(self.llama_model.dtype) for key in inputs}
with torch.no_grad():
embeddings = self.visual_encoder(inputs)
video_embeds = embeddings[ModalityType.VISION] # bsz x 1024
inputs_llama = self.llama_proj(video_embeds).unsqueeze(1) # bsz x 1 x llama_size
atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(self.device) # bsz x 1
return inputs_llama, atts_llama
def encode_audio(self, audio_paths):
inputs = {ModalityType.AUDIO: data.load_and_transform_audio_data(audio_paths, self.device)}
# convert into visual dtype
inputs = {key: inputs[key].to(self.llama_model.dtype) for key in inputs}
with torch.no_grad():
embeddings = self.visual_encoder(inputs)
audio_embeds = embeddings[ModalityType.AUDIO] # bsz x 1024
inputs_llama = self.llama_proj(audio_embeds).unsqueeze(1) # bsz x 1 x llama_size
atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(self.device) # bsz x 1
return inputs_llama, atts_llama
def encode_image(self, image_paths):
inputs = {ModalityType.VISION: data.load_and_transform_vision_data(image_paths, self.device)}
# convert into visual dtype
inputs = {key: inputs[key].to(self.llama_model.dtype) for key in inputs}
with torch.no_grad():
embeddings = self.visual_encoder(inputs)
image_embeds = embeddings['vision'] # bsz x 1024
inputs_llama = self.llama_proj(image_embeds).unsqueeze(1) # bsz x 1 x llama_size
atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(self.device) # bsz x 1
return inputs_llama, atts_llama
def prompt_wrap(self, img_embeds, input_ids, target_ids, attention_mask):
'''
input_ids, target_ids, attention_mask: bsz x s2
'''
input_ids = input_ids.to(self.device) # bsz x s2
target_ids = target_ids.to(self.device) # bsz x s2
attention_mask = attention_mask.to(self.device) # bsz x s2
batch_size = input_ids.shape[0]
bos = torch.ones([batch_size, 1], dtype=input_ids.dtype,
device=input_ids.device) * self.llama_tokenizer.bos_token_id # bsz x 1
if self.args['freeze_lm']:
p_after_embeds = self.llama_model.model.embed_tokens(input_ids).expand(batch_size, -1,
-1) # bsz x s2 x embed_dim
bos_embeds = self.llama_model.model.embed_tokens(bos) # bsz x 1 x embed_dim
else:
p_after_embeds = self.llama_model.model.model.embed_tokens(input_ids).expand(batch_size, -1,
-1) # bsz x s2 x embed_dim
bos_embeds = self.llama_model.model.model.embed_tokens(bos) # bsz x 1 x embed_dim
if img_embeds is not None:
p_before = '### Human: <Img>'
p_before_tokens = self.llama_tokenizer(p_before, return_tensors="pt", add_special_tokens=False).to(
self.device)
# peft model need deeper call
if self.args['freeze_lm']:
p_before_embeds = self.llama_model.model.embed_tokens(p_before_tokens.input_ids).expand(batch_size, -1,
-1) # bsz x s1 x embed_dim
else:
p_before_embeds = self.llama_model.model.model.embed_tokens(p_before_tokens.input_ids).expand(
batch_size, -1, -1) # bsz x s1 x embed_dim
inputs_embeds = torch.cat([bos_embeds, p_before_embeds, img_embeds, p_after_embeds], dim=1).to(
self.device) # bsz x (1+s1+1+s2) x embed_dim
# create targets
empty_targets = (
torch.ones([batch_size, 1 + p_before_embeds.size()[1] + 1], # 1 (bos) + s1 + 1
dtype=torch.long).to(self.device).fill_(-100)
) # bsz x (1 + s1)
targets = torch.cat([empty_targets, target_ids], dim=1).to(self.device) # bsz x (1 + s1 + 1 + s2)
assert inputs_embeds.size()[1] == targets.size()[1]
atts_prefix = torch.ones([batch_size, 1 + p_before_embeds.size()[1] + 1], dtype=torch.long).to(
self.device) # bsz x (1 + s1 + 1)
attention_mask = torch.cat([atts_prefix, attention_mask], dim=1).to(self.device)
assert attention_mask.size() == targets.size() # bsz x (1 + s1 + 1 + s2)
else:
p_before = '### Human: '
p_before_tokens = self.llama_tokenizer(p_before, return_tensors="pt", add_special_tokens=False).to(
self.device)
# peft model need deeper call
if self.args['freeze_lm']:
p_before_embeds = self.llama_model.model.embed_tokens(p_before_tokens.input_ids).expand(batch_size, -1,
-1) # bsz x s1 x embed_dim
else:
p_before_embeds = self.llama_model.model.model.embed_tokens(p_before_tokens.input_ids).expand(
batch_size, -1, -1) # bsz x s1 x embed_dim
inputs_embeds = torch.cat([bos_embeds, p_before_embeds, p_after_embeds], dim=1).to(
self.device) # bsz x (1+s1+s2) x embed_dim
# create targets
empty_targets = (
torch.ones([batch_size, 1 + p_before_embeds.size()[1]], # 1 (bos) + s1
dtype=torch.long).to(self.device).fill_(-100)
) # bsz x (1 + s1)
targets = torch.cat([empty_targets, target_ids], dim=1).to(self.device) # bsz x (1 + s1 + s2)
assert inputs_embeds.size()[1] == targets.size()[1]
atts_prefix = torch.ones([batch_size, 1 + p_before_embeds.size()[1]], dtype=torch.long).to(
self.device) # bsz x (1 + s1)
attention_mask = torch.cat([atts_prefix, attention_mask], dim=1).to(self.device)
assert attention_mask.size() == targets.size() # bsz x (1 + s1 + s2)
return inputs_embeds, targets, attention_mask
def _train_with_mode(self, texts, img_embeds=None, modality='text', num_gen_tokens='8',
text_hidden_fcs=None, gen_token_idx=None, text_emb_layers=None, text_prompt_embeddins=None,
loss_scale=1.0, stage=2):
"""
:param num_gen_tokens: the number of generation tokens
:param modality: mode can be 'image' / 'video' / 'audio' / 'text'
:param text_hidden_fcs: alignment module
:param gen_token_idx: List
:param text_emb_layers: the layer index of LLM hidden states
:param text_prompt_embeddins: the textual caption/prompt embeddings
:param loss_scale: the scale on the mse loss for alignment
:param stage: the training stage
:param
"""
if stage == 2:
input_ids, target_ids, attention_mask = process_batch_stage_2(self.llama_tokenizer, texts,
self.max_length,
num_gen_tokens,
modality
)
elif stage == 3:
input_ids, target_ids, attention_mask = process_batch_stage_3(self.llama_tokenizer, texts, self.max_length,
self.args['num_gen_img_tokens'],
self.args['num_gen_video_tokens'],
self.args['num_gen_audio_tokens']
)
else:
raise NotImplementedError
inputs_embeds, targets, attention_mask = self.prompt_wrap(img_embeds, input_ids, target_ids, attention_mask)
outputs = self.llama_model(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
return_dict=True,
output_hidden_states=True,
labels=targets,
)
loss = outputs.loss
# calculate the token accuracy
chosen_tokens = torch.max(outputs.logits, dim=-1)[1][:, 1:-1] # [B, S-1]
labels = targets[:, 2:]
gen_acc = (chosen_tokens.reshape(-1) == labels.reshape(-1)).to(torch.long) # [B*S]
valid_mask = (labels != -100).reshape(-1)
valid_tokens = gen_acc & valid_mask # [B*S]
gen_acc = valid_tokens.sum().item() / (valid_mask.sum().item() + 1.0)
if modality == 'text':
return loss, gen_acc, torch.zeros_like(loss)
else:
hidden_states = []
# text_hidden_fcs = self.gen_text_hidden_fcs
# based on the targets to obtain the hidden state, targets includes the [BOS] token
start_pos = (targets == gen_token_idx[0]).nonzero(as_tuple=False)[:, 1].tolist()
end_pos = (targets == gen_token_idx[-1]).nonzero(as_tuple=False)[:, 1].tolist()
# logging.info(f'targets : {targets}')
# logging.info(f'start_pos : {start_pos}')
# logging.info(f'end_pos : {end_pos}')
assert 0 < len(start_pos) == len(end_pos) == input_ids.size(0) and len(end_pos) > 0, (start_pos, end_pos)
for idx, fc_layer in zip(text_emb_layers, text_hidden_fcs):
hidden_embedding = []
input_embedding = []
for b, (s, e) in enumerate(zip(start_pos, end_pos)):
assert e - s + 1 == num_gen_tokens, (s, e)
hidden_embedding.append(outputs.hidden_states[idx][b, s:e + 1, :])
input_embedding.append(self.input_embeddings(targets[b, s:e + 1]))
hidden_embedding = torch.stack(hidden_embedding, dim=0)
input_embedding = torch.stack(input_embedding, dim=0)
hidden_states.append(fc_layer(hidden_embedding, input_embedding)) # (N, seq_len, 2048)
embeddings = torch.stack(hidden_states, dim=-1).sum(dim=-1) # (N, 77, 768)
# embeddings = embeddings / embeddings.norm(dim=-1, keepdim=True) # (N, T_I_V_A.txt, 256)
# Obtain the embeddings produced by the text encoder of a frozen text-to-image generation model
input_text = [conversation for conversation in texts]
if modality == 'image':
mse_loss = l2_loss(embeddings, torch.stack(text_prompt_embeddins, dim=0).to(self.device))
elif modality == 'video':
mse_loss = l2_loss(embeddings, torch.stack(text_prompt_embeddins, dim=0).to(self.device))
else:
text_prompt_embeddins = torch.stack(text_prompt_embeddins, dim=0).to(self.device)
assert len(text_prompt_embeddins.shape) == 2, text_prompt_embeddins.shape
text_prompt_embeddins = text_prompt_embeddins.view(text_prompt_embeddins.size(0), 1,
text_prompt_embeddins.size(1))
mse_loss = l2_loss(embeddings, text_prompt_embeddins)
mse_loss = mse_loss.mean()
loss += loss_scale * mse_loss
return loss, gen_acc, mse_loss
def _enc_align_training_stage_1(self, inputs):
"""
In the stage 1: training the encoding-side alignment via image/video/audio caption tasks
modality: the input modality for each caption task, it could be 'image', 'video' or 'audio'.
"""
dataset_type = inputs['dataset_types'][0]
if dataset_type == 'ImageToText':
image_paths = inputs['mm_paths']
mm_embeds, _ = self.encode_image(image_paths)
elif dataset_type == 'VideoToText':
video_paths = inputs['mm_paths']
mm_embeds, _ = self.encode_video(video_paths)
elif dataset_type == 'AudioToText':
audio_paths = inputs['mm_paths']
mm_embeds, _ = self.encode_audio(audio_paths)
else:
raise NotImplementedError
input_ids, target_ids, attention_mask = process_batch_stage_1(self.llama_tokenizer,
inputs['output_texts'],
self.max_length,
self.args['prompt'])
# print(input_ids)
inputs_embeds, targets, attention_mask = self.prompt_wrap(mm_embeds, input_ids, target_ids, attention_mask)
outputs = self.llama_model(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
return_dict=True,
output_hidden_states=True,
labels=targets,
)
loss = outputs.loss
# calculate the token accuracy
chosen_tokens = torch.max(outputs.logits, dim=-1)[1][:, 1:-1] # [B, S-1]
labels = targets[:, 2:]
gen_acc = (chosen_tokens.reshape(-1) == labels.reshape(-1)).to(torch.long) # [B*S]
valid_mask = (labels != -100).reshape(-1)
valid_tokens = gen_acc & valid_mask # [B*S]
gen_acc = valid_tokens.sum().item() / (valid_mask.sum().item() + 1.0)
return loss, gen_acc
def _dec_align_training_stage_2(self, inputs):
"""
In the stage 2: training the decoding-side alignment via minimize the distance between the
representation of signal tokens and caption from text encoder within the respective diffusion models.
modality: the output modality for each caption.
"""
dataset_type = inputs['dataset_types'][0]
if dataset_type == 'TextToImage':
loss, gen_acc, mse_loss = self._train_with_mode(texts=inputs['output_texts'],
modality='image',
num_gen_tokens=self.args['num_gen_img_tokens'],
text_hidden_fcs=self.gen_text_hidden_fcs,
gen_token_idx=self.args['gen_img_token_idx'],
text_emb_layers=self.args['text_emb_to_img_layers'],
text_prompt_embeddins=inputs['caption_embs'],
stage=self.stage)
elif dataset_type == 'TextToVideo':
loss, gen_acc, mse_loss = self._train_with_mode(texts=inputs['output_texts'],
modality='video',
num_gen_tokens=self.args['num_gen_video_tokens'],
text_hidden_fcs=self.gen_text_hidden_fcs_video,
gen_token_idx=self.args['gen_video_token_idx'],
text_emb_layers=self.args['text_emb_to_video_layers'],
text_prompt_embeddins=inputs['caption_embs'],
stage=self.stage)
elif dataset_type == 'TextToAudio':
loss, gen_acc, mse_loss = self._train_with_mode(texts=inputs['output_texts'],
modality='audio',
num_gen_tokens=self.args['num_gen_audio_tokens'],
text_hidden_fcs=self.gen_text_hidden_fcs_audio,
gen_token_idx=self.args['gen_audio_token_idx'],
text_emb_layers=self.args['text_emb_to_audio_layers'],
text_prompt_embeddins=inputs['caption_embs'],
stage=self.stage)
else:
raise NotImplementedError
return loss, gen_acc, mse_loss
def _instruction_tuning_stage_3(self, inputs):
"""
In the stage 3: instruction-following training via the instruction dataset.
"""
loss = 0
gen_acc = 0
mse_loss = []
dataset_type = inputs['dataset_types'][0]
if dataset_type == 'TextToImage':
loss, gen_acc, mse_loss = self._train_with_mode(inputs['output_texts'], None, 'image',
self.args['num_gen_img_tokens'],
self.gen_text_hidden_fcs,
self.args['gen_img_token_idx'],
self.args['text_emb_to_img_layers'],
inputs['caption_embs'], stage=self.stage)
elif dataset_type == 'TextToVideo':
loss, gen_acc, mse_loss = self._train_with_mode(inputs['output_texts'], None, 'video',
self.args['num_gen_video_tokens'],
self.gen_text_hidden_fcs_video,
self.args['gen_video_token_idx'],
self.args['text_emb_to_video_layers'],
inputs['caption_embs'], loss_scale=2,
stage=self.stage)
elif dataset_type == 'TextToAudio':
loss, gen_acc, mse_loss = self._train_with_mode(inputs['output_texts'], None, 'audio',
self.args['num_gen_audio_tokens'],
self.gen_text_hidden_fcs_audio,
self.args['gen_audio_token_idx'],
self.args['text_emb_to_audio_layers'],
inputs['caption_embs'], stage=self.stage)
elif dataset_type == 'ImageToText':
image_paths = inputs['mm_paths']
img_embeds, _ = self.encode_image(image_paths)
loss, gen_acc, _ = self._train_with_mode(inputs['output_texts'], img_embeds, modality='text',
stage=self.stage)
elif dataset_type == 'TextToText':
loss, gen_acc, _ = self._train_with_mode(inputs['output_texts'], None, modality='text',
stage=self.stage)
else:
raise NotImplementedError
return loss, gen_acc, mse_loss
def _stage_4_training(self, inputs):
"""
In the stage 4, we employ the modality-switch dataset to instruction-tune the overall framework
"""
pass
def forward(self, inputs):
loss = 0
gen_acc = 0
mse_loss = None
if self.stage == 1:
loss, gen_acc = self._enc_align_training_stage_1(inputs)
elif self.stage == 2:
loss, gen_acc, mse_loss = self._dec_align_training_stage_2(inputs)
elif self.stage == 3:
loss, gen_acc, mse_loss = self._instruction_tuning_stage_3(inputs)
else:
raise NotImplementedError(f"stage {self.stage} is not implemented, now it only support [1, 2, 3]")
return loss, gen_acc, mse_loss
def extract_multimodal_feature(self, inputs):
features = []
if inputs['image_paths']:
image_embeds, _ = self.encode_image(inputs['image_paths'])
features.append(image_embeds)
if inputs['audio_paths']:
audio_embeds, _ = self.encode_audio(inputs['audio_paths'])
features.append(audio_embeds)
if inputs['video_paths']:
video_embeds, _ = self.encode_video(inputs['video_paths'])
features.append(video_embeds)
feature_embeds = torch.cat(features).sum(dim=0).unsqueeze(0)
return feature_embeds
def _prepare_image_embed(self, text, batch_size):
pattern = r'Image>(.*?)<\/Image'
matches = re.findall(pattern, text)
features = []
p_before_token = self.llama_tokenizer('<Img>', add_special_tokens=False, return_tensors='pt').to(self.device)
p_after_token = self.llama_tokenizer('</Img>', add_special_tokens=False, return_tensors='pt').to(self.device)
if self.args['freeze_lm']:
p_before_embeds = self.llama_model.model.embed_tokens(p_before_token.input_ids).expand(batch_size, -1,
-1) # bsz x s1 x embed_dim
p_after_embeds = self.llama_model.model.embed_tokens(p_after_token.input_ids).expand(batch_size, -1,
-1) # bsz x s2 x embed_dim
else:
p_before_embeds = self.llama_model.model.model.embed_tokens(p_before_token.input_ids).expand(batch_size, -1,
-1) # bsz x s1 x embed_dim
p_after_embeds = self.llama_model.model.model.embed_tokens(p_after_token.input_ids).expand(batch_size, -1,
-1) # bsz x s2 x embed_dim
for m in matches:
print('image path: ', m)
if m.startswith('temp'):
m = os.path.join('./', m)
print('image path: ', m)
_temp_embedding, _ = self.encode_image([m])
features.append(_temp_embedding)
feature_embeds = torch.cat(features).sum(dim=0).unsqueeze(0)
return torch.cat([p_before_embeds, feature_embeds, p_after_embeds], dim=1)
def _prepare_video_embed(self, text, batch_size):
pattern = r'Video>(.*?)<\/Video'
matches = re.findall(pattern, text)
features = []
p_before_token = self.llama_tokenizer('<Img>', add_special_tokens=False, return_tensors='pt').to(self.device)
p_after_token = self.llama_tokenizer('</Img>', add_special_tokens=False, return_tensors='pt').to(self.device)
if self.args['freeze_lm']:
p_before_embeds = self.llama_model.model.embed_tokens(p_before_token.input_ids).expand(batch_size, -1,
-1) # bsz x s1 x embed_dim
p_after_embeds = self.llama_model.model.embed_tokens(p_after_token.input_ids).expand(batch_size, -1,
-1) # bsz x s2 x embed_dim
else:
p_before_embeds = self.llama_model.model.model.embed_tokens(p_before_token.input_ids).expand(batch_size, -1,
-1) # bsz x s1 x embed_dim
p_after_embeds = self.llama_model.model.model.embed_tokens(p_after_token.input_ids).expand(batch_size, -1,
-1) # bsz x s2 x embed_dim
for m in matches:
print('Video path: ', m)
if m.startswith('temp'):
m = os.path.join('./', m)
print('Video path: ', m)
_temp_embedding, _ = self.encode_video([m])
features.append(_temp_embedding)
feature_embeds = torch.cat(features).sum(dim=0).unsqueeze(0)
return torch.cat([p_before_embeds, feature_embeds, p_after_embeds], dim=1)
def _prepare_audio_embed(self, text, batch_size):
pattern = r'Audio>(.*?)<\/Audio'
matches = re.findall(pattern, text)
features = []
p_before_token = self.llama_tokenizer('<Img>', add_special_tokens=False, return_tensors='pt').to(self.device)
p_after_token = self.llama_tokenizer('</Img>', add_special_tokens=False, return_tensors='pt').to(self.device)
if self.args['freeze_lm']:
p_before_embeds = self.llama_model.model.embed_tokens(p_before_token.input_ids).expand(batch_size, -1,
-1) # bsz x s1 x embed_dim
p_after_embeds = self.llama_model.model.embed_tokens(p_after_token.input_ids).expand(batch_size, -1,
-1) # bsz x s2 x embed_dim
else:
p_before_embeds = self.llama_model.model.model.embed_tokens(p_before_token.input_ids).expand(batch_size, -1,
-1) # bsz x s1 x embed_dim
p_after_embeds = self.llama_model.model.model.embed_tokens(p_after_token.input_ids).expand(batch_size, -1,
-1) # bsz x s2 x embed_dim
for m in matches:
print('Audio path: ', m)
if m.startswith('temp'):
m = os.path.join('./', m)
print('Video path: ', m)
_temp_embedding, _ = self.encode_audio([m])
features.append(_temp_embedding)
feature_embeds = torch.cat(features).sum(dim=0).unsqueeze(0)
return torch.cat([p_before_embeds, feature_embeds, p_after_embeds], dim=1)
def prepare_generation_embedding(self, inputs):
prompt = inputs['prompt']
text = prompt + '\n### Assistant:'
print("text prompt: ", text)
batch_size = 1
input_embeds = []
split_text = re.split(r' <|> ', text)
for st in split_text:
if st.startswith('Image>'):
input_embeds.append(self._prepare_image_embed(st, batch_size))
elif st.startswith('Audio>'):
input_embeds.append(self._prepare_audio_embed(st, batch_size))
elif st.startswith('Video>'):
input_embeds.append(self._prepare_video_embed(st, batch_size))
else:
text_tokens = self.llama_tokenizer(st, add_special_tokens=False, return_tensors='pt').to(self.device)
bos = torch.ones([batch_size, 1],
dtype=text_tokens.input_ids.dtype,
device=text_tokens.input_ids.device) * self.llama_tokenizer.bos_token_id # bsz x 1
if self.args['freeze_lm']:
text_embeds = self.llama_model.model.embed_tokens(text_tokens.input_ids).expand(batch_size, -1, -1)
bos_embeds = self.llama_model.model.embed_tokens(bos) # bsz x 1 x embed_dim
else:
text_embeds = self.llama_model.model.model.embed_tokens(text_tokens.input_ids).expand(batch_size,
-1, -1)
bos_embeds = self.llama_model.model.model.embed_tokens(bos) # bsz x 1 x embed_dim
input_embeds.append(bos_embeds)
input_embeds.append(text_embeds)
inputs_embeds = torch.cat(input_embeds, dim=1) # bsz x (1+s2) x embed_dim
return inputs_embeds
def generate_tokens_embeddings(self, inputs, input_embeds, temperature: float = 0.0, top_p: float = 1.0):
"""
This function is used to generate the tokens and output embeddings that employed to generate images/videos/audios
inputs: dict
input_embeds: tensor
return:
out: the output tokens index
output_embeddings: output embeddings for synthesizing images
video_output_embedding: output embeddings for synthesizing video
audio_output_embedding: output embeddings for synthesizing audio
"""
stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=inputs['stops_id'], encounters=1)])
outputs = self.llama_model.generate(
inputs_embeds=input_embeds,
max_new_tokens=inputs['max_tgt_len'],
top_p=inputs['top_p'],
temperature=inputs['temperature'],
# repeat_pen,
do_sample=True,
use_cache=True,
stopping_criteria=stopping_criteria,
output_hidden_states=True,
return_dict_in_generate=True,
output_attentions=True
)
output_embeddings = []
video_output_embedding = []
audio_output_embedding = []
out = outputs.sequences
for _hidden_states in outputs.hidden_states[1:]:
for idx in self.args['text_emb_to_img_layers']:
output_embeddings.append(_hidden_states[idx])
for idx in self.args['text_emb_to_video_layers']:
video_output_embedding.append(_hidden_states[idx])
for idx in self.args['text_emb_to_audio_layers']:
audio_output_embedding.append(_hidden_states[idx])
output_embeddings = torch.cat(output_embeddings, dim=1)
video_output_embedding = torch.cat(video_output_embedding, dim=1)
audio_output_embedding = torch.cat(audio_output_embedding, dim=1)
return out, output_embeddings, video_output_embedding, audio_output_embedding
def generate_images(self, generated_ids, embeddings, all_gen_idx, generation_model=None,
guidance_scale=7.5, num_inference_steps=40):
"""
To generate the images based on the embeddings
generated_ids: the index of the generated tokens
embedding: the embeddings for synthesizing images
all_gen_idx: the index of [IMG0] in the generated_ids
"""
last_ret_idx = 0
return_outputs = []
generation_model = StableDiffusionPipeline.from_pretrained(self.sd_ckpt_path, torch_dtype=torch.float16).to(
"cuda")
for gen_idx in all_gen_idx:
assert generated_ids[0,
gen_idx:gen_idx + self.args['num_gen_img_tokens']].cpu().detach().numpy().tolist() == self.args[
'gen_img_token_idx'], (
generated_ids[0, gen_idx:gen_idx + self.args['num_gen_img_tokens']], self.args['gen_img_token_idx'])
raw_emb = embeddings[:, gen_idx - 1:gen_idx - 1 + self.args['num_gen_img_tokens'], :] # (1, 8, 4096)
# Produce generation embedding.
gen_prefix = ' '.join([f'[IMG{i}]' for i in range(self.args['num_gen_img_tokens'])])
gen_prefx_ids = self.llama_tokenizer(gen_prefix, add_special_tokens=False,
return_tensors="pt").input_ids.to(self.device)
gen_prefix_embs = self.input_embeddings(gen_prefx_ids) # (1, T_I_V_A.txt, D)
gen_emb = self.gen_text_hidden_fcs[-1](raw_emb, gen_prefix_embs) # (1, 77, 768)
if gen_emb.shape[1] != 77:
bs = gen_emb.shape[0]
clip_emb = 768
gen_emb = gen_emb.reshape(bs, -1, clip_emb) # (bs, T_I_V_A.txt, 768)
seq_len = gen_emb.shape[1]
gen_emb = torch.cat([gen_emb, torch.zeros((bs, 77 - seq_len, clip_emb), device=gen_emb.device,
dtype=gen_emb.dtype)], dim=1)
image_outputs = generation_model(prompt_embeds=gen_emb,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps).images
caption = \
self.llama_tokenizer.batch_decode(generated_ids[:, last_ret_idx:gen_idx], skip_special_tokens=True)[
0]
last_ret_idx = gen_idx + 1
return_outputs.append(caption + f' {gen_prefix}')
# return_outputs.append(truncate_caption(caption) + f' {gen_prefix}')
return_outputs.append(image_outputs)
return return_outputs
def generate_videos(self, generated_ids, embeddings, all_gen_idx, generation_model=None,
guidance_scale=7.5, num_inference_steps=40, height=320, width=576, num_frames=16):
"""
To generate videos based on the embeddings
generated_ids: the index of the generated tokens
embedding: the embeddings for synthesizing videos
all_gen_idx: the index of [VID0] in the generated_ids
"""
return_outputs = []
last_ret_idx = 0
generation_model = TextToVideoSDPipeline.from_pretrained(self.vd_ckpt_path, torch_dtype=torch.float16).to(
"cuda")
for gen_idx in all_gen_idx:
assert generated_ids[0,
gen_idx:gen_idx + self.args['num_gen_video_tokens']].cpu().detach().numpy().tolist() == \
self.args[
'gen_video_token_idx'], (
generated_ids[0, gen_idx:gen_idx + self.args['num_gen_video_tokens']],
self.args['gen_video_token_idx'])
raw_emb = embeddings[:, gen_idx - 1:gen_idx - 1 + self.args['num_gen_video_tokens'], :] # (1, 8, 4096)
# print(f'gen_idx: {gen_idx}')
# print('4', raw_emb.size())
# assert len(self.args['text_emb_to_video_layers']) == 1
# Produce generation embedding.
gen_prefix = ' '.join([f'[VID{i}]' for i in range(self.args['num_gen_video_tokens'])])
gen_prefx_ids = self.llama_tokenizer(gen_prefix, add_special_tokens=False,
return_tensors="pt").input_ids.to(self.device)
gen_prefix_embs = self.input_embeddings(gen_prefx_ids) # (1, T_I_V_A.txt, D)
gen_emb = self.gen_text_hidden_fcs_video[-1](raw_emb, gen_prefix_embs) # (1, 77, 768)
if gen_emb.shape[1] != 77:
print(f"Padding {gen_emb.shape} with zeros")
bs = gen_emb.shape[0]
clip_emb = 768
gen_emb = gen_emb.reshape(bs, -1, clip_emb) # (bs, T_I_V_A.txt, 768)
seq_len = gen_emb.shape[1]
gen_emb = torch.cat([gen_emb, torch.zeros((bs, 77 - seq_len, clip_emb), device=gen_emb.device,
dtype=gen_emb.dtype)], dim=1)
print('Padded to', gen_emb.shape)
video_outputs = generation_model(prompt_embeds=gen_emb,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps, height=height,
width=width, num_frames=num_frames).frames
caption = \
self.llama_tokenizer.batch_decode(generated_ids[:, last_ret_idx:gen_idx], skip_special_tokens=True)[
0]
last_ret_idx = gen_idx + 1
return_outputs.append(caption + f' {gen_prefix}')
# return_outputs.append(truncate_caption(caption) + f' {gen_prefix}')
return_outputs.append(video_outputs)
return return_outputs
def generate_audios(self, generated_ids, embeddings, all_gen_idx, generation_model=None,
guidance_scale=7.5, num_inference_steps=40, audio_length_in_s=5.0):
"""
To generate videos based on the embeddings
generated_ids: the index of the generated tokens
embedding: the embeddings for synthesizing audios
all_gen_idx: the index of [AUD0] in the generated_ids
"""
return_outputs = []
last_ret_idx = 0
generation_model = AudioLDMPipeline.from_pretrained(self.ad_ckpt_path, torch_dtype=torch.float16).to("cuda")
for gen_idx in all_gen_idx:
assert generated_ids[0,
gen_idx:gen_idx + self.args['num_gen_audio_tokens']].cpu().detach().numpy().tolist() == \
self.args[
'gen_audio_token_idx'], (
generated_ids[0, gen_idx:gen_idx + self.args['num_gen_audio_tokens']],
self.args['gen_audio_token_idx'])
raw_emb = embeddings[:, gen_idx - 1:gen_idx - 1 + self.args['num_gen_audio_tokens'], :] # (1, 8, 4096)
# print(f'gen_idx: {gen_idx}')
# print('raw_emb 4', raw_emb.size())
# assert len(self.args['text_emb_to_video_layers']) == 1
# Produce generation embedding.
gen_prefix = ' '.join([f'[AUD{i}]' for i in range(self.args['num_gen_audio_tokens'])])
gen_prefx_ids = self.llama_tokenizer(gen_prefix, add_special_tokens=False,
return_tensors="pt").input_ids.to(self.device)
gen_prefix_embs = self.input_embeddings(gen_prefx_ids) # (1, T_I_V_A.txt, D)
gen_emb = self.gen_text_hidden_fcs_audio[-1](raw_emb, gen_prefix_embs) # (1, 77, 768)
# print('gen_emb size:', gen_emb.size())
bs = gen_emb.shape[0]
hid_emb_size = gen_emb.shape[2]
gen_emb = gen_emb.view(bs, hid_emb_size)
audio_outputs = generation_model(prompt_embeds=gen_emb,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
audio_length_in_s=audio_length_in_s).audios[0]
caption = \
self.llama_tokenizer.batch_decode(generated_ids[:, last_ret_idx:gen_idx], skip_special_tokens=True)[
0]
last_ret_idx = gen_idx + 1
return_outputs.append(caption + f' {gen_prefix}')
# return_outputs.append(truncate_caption(caption) + f' {gen_prefix}')
return_outputs.append(audio_outputs)
return return_outputs
def generate(self, inputs):
"""
inputs = {
'image_paths': optional,
'audio_paths': optional
'video_paths': optional
'thermal_paths': optional
'mode': generation mode,
'prompt': human input prompt,
'max_tgt_len': generation length,
'top_p': top_p,
'temperature': temperature, Used to modulate logit distribution.
'modality_embeds': None or torch.tensor,
'modality_cache': save the image cache,
'filter_value': Value to assign to tokens that should never be generated,
'min_word_tokens': Minimum number of words to generate before allowing a [IMG] output.
'gen_scale_factor': float = 1.0,
'stops_id': the default value is [[835], [2277, 29937]] the stop token is '###', which has two types of tokenization ways, [835] and [2277, 29937]
'ENCOUNTERS': the times that the generated sentence will be ended.
'load_sd': whether use SD for image generation
'max_num_imgs': Maximum number of images to return in one generation pass.
'guidance_scale_for_img': the guidance ratio of conditioner, if it is None, the default value will be applied in SD
'num_inference_steps_for_img': the number of inference step for image generation in the stable diffusion model
'load_vd': whether use VD for video generation
'max_num_vids': Maximum number of videos to return in one generation pass.
'guidance_scale_for_vid': the guidance ratio of conditioner, if it is None, the default value will be applied in VD
'num_inference_steps_for_vid': the number of inference step for video generation in the stable diffusion model
'height': (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The height in pixels of the generated video.
'width': (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The width in pixels of the generated video.
'num_frames': (`int`, *optional*, defaults to 16):
The number of video frames that are generated. Defaults to 16 frames which at 8 frames per seconds
amounts to 2 seconds of video.
'load_ad': whether use AD for audio generation
'max_num_auds': Maximum number of audios to return in one generation pass.
'guidance_scale_for_aud': the guidance ratio of conditioner, if it is None, the default value will be applied in AD
'num_inference_steps_for_aud': the number of inference step for audio generation in the stable diffusion model
'audio_length_in_s': the seconds for generated audio length
}
"""
# init output with image tokens
input_embeds = self.prepare_generation_embedding(inputs)
generated_ids, generated_image_embeddings, generated_video_embeddings, generated_audio_embeddings = self.generate_tokens_embeddings(
inputs, input_embeds)
return_outputs = []
# Find up to max_num_rets [IMG] tokens, and their corresponding scores.
all_gen_img_idx = [i for i, x in enumerate(generated_ids[0, :] == self.args['gen_img_token_idx'][0]) if x][
:inputs['max_num_imgs']]
print('all_gen_img_idx: ', all_gen_img_idx)
# Find up to max_num_rest [VID] tokens, and their corresponding scores.
all_gen_vid_idx = [i for i, x in enumerate(generated_ids[0, :] == self.args['gen_video_token_idx'][0]) if x][
:inputs['max_num_vids']]
print('all_gen_vid_idx: ', all_gen_vid_idx)
# Find up to max_num_rest [AUD] tokens, and their corresponding scores.
all_gen_aud_idx = [i for i, x in enumerate(generated_ids[0, :] == self.args['gen_audio_token_idx'][0]) if x][
:inputs['max_num_auds']]
print('all_gen_aud_idx: ', all_gen_aud_idx)
if len(all_gen_img_idx) == 0 and len(all_gen_vid_idx) == 0 and len(all_gen_aud_idx) == 0:
# No [IMG], [VID], [AUD] tokens.
caption = self.llama_tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
# return_outputs.append(truncate_caption(caption))
return_outputs.append(caption)
else:
if len(all_gen_img_idx) > 0:
img_outputs = self.generate_images(generated_ids, generated_image_embeddings, all_gen_img_idx, None,
guidance_scale=inputs['guidance_scale_for_img'],
num_inference_steps=inputs['num_inference_steps_for_img'],
)
return_outputs.append({'img': img_outputs})
if len(all_gen_vid_idx) > 0:
vid_outputs = self.generate_videos(generated_ids, generated_video_embeddings, all_gen_vid_idx, None,
guidance_scale=inputs['guidance_scale_for_vid'],
num_inference_steps=inputs['num_inference_steps_for_vid'],
height=inputs['height'], width=inputs['width'],
num_frames=inputs['num_frames'])
return_outputs.append({'vid': vid_outputs})
if len(all_gen_aud_idx) > 0:
aud_outputs = self.generate_audios(generated_ids, generated_audio_embeddings, all_gen_aud_idx, None,
guidance_scale=inputs['guidance_scale_for_aud'],
num_inference_steps=inputs['num_inference_steps_for_aud'],
audio_length_in_s=inputs['audio_length_in_s'])
return_outputs.append({'aud': aud_outputs})
return return_outputs
|