FrankC0st1e
commited on
Commit
·
a4f2dcb
1
Parent(s):
8fa0de6
fix bug in .py
Browse files- configuration_minicpm.py +0 -1
- modeling_minicpm.py +11 -11
configuration_minicpm.py
CHANGED
@@ -174,7 +174,6 @@ class MiniCPM3Config(PretrainedConfig):
|
|
174 |
self.use_cache = use_cache
|
175 |
self.rope_theta = rope_theta
|
176 |
self.rope_scaling = rope_scaling
|
177 |
-
self._rope_scaling_validation()
|
178 |
self.attention_bias = attention_bias
|
179 |
self.attention_dropout = attention_dropout
|
180 |
self.scale_emb = scale_emb
|
|
|
174 |
self.use_cache = use_cache
|
175 |
self.rope_theta = rope_theta
|
176 |
self.rope_scaling = rope_scaling
|
|
|
177 |
self.attention_bias = attention_bias
|
178 |
self.attention_dropout = attention_dropout
|
179 |
self.scale_emb = scale_emb
|
modeling_minicpm.py
CHANGED
@@ -48,7 +48,7 @@ from transformers.utils import (
|
|
48 |
replace_return_docstrings,
|
49 |
)
|
50 |
from transformers.utils.import_utils import is_torch_fx_available
|
51 |
-
from .configuration_minicpm import
|
52 |
import re
|
53 |
|
54 |
try:
|
@@ -69,7 +69,7 @@ if is_torch_fx_available():
|
|
69 |
|
70 |
logger = logging.get_logger(__name__)
|
71 |
|
72 |
-
_CONFIG_FOR_DOC = "
|
73 |
|
74 |
|
75 |
def _get_unpad_data(attention_mask):
|
@@ -331,7 +331,7 @@ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
|
331 |
class MiniCPMAttention(nn.Module):
|
332 |
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
333 |
|
334 |
-
def __init__(self, config:
|
335 |
super().__init__()
|
336 |
self.config = config
|
337 |
self.layer_idx = layer_idx
|
@@ -784,7 +784,7 @@ class MiniCPMSdpaAttention(MiniCPMAttention):
|
|
784 |
if output_attentions:
|
785 |
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
786 |
logger.warning_once(
|
787 |
-
"
|
788 |
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
789 |
)
|
790 |
return super().forward(
|
@@ -884,7 +884,7 @@ MINICPM_ATTENTION_CLASSES = {
|
|
884 |
|
885 |
|
886 |
class MiniCPMDecoderLayer(nn.Module):
|
887 |
-
def __init__(self, config:
|
888 |
super().__init__()
|
889 |
self.hidden_size = config.hidden_size
|
890 |
self.self_attn = MINICPM_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
|
@@ -968,7 +968,7 @@ MINICPM_START_DOCSTRING = r"""
|
|
968 |
and behavior.
|
969 |
|
970 |
Parameters:
|
971 |
-
config ([`
|
972 |
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
973 |
load the weights associated with the model, only the configuration. Check out the
|
974 |
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
@@ -980,7 +980,7 @@ MINICPM_START_DOCSTRING = r"""
|
|
980 |
MINICPM_START_DOCSTRING,
|
981 |
)
|
982 |
class MiniCPM3PreTrainedModel(PreTrainedModel):
|
983 |
-
config_class =
|
984 |
base_model_prefix = "model"
|
985 |
supports_gradient_checkpointing = True
|
986 |
_no_split_modules = ["MiniCPMDecoderLayer"]
|
@@ -1080,10 +1080,10 @@ class MiniCPM3Model(MiniCPM3PreTrainedModel):
|
|
1080 |
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MiniCPMDecoderLayer`]
|
1081 |
|
1082 |
Args:
|
1083 |
-
config:
|
1084 |
"""
|
1085 |
|
1086 |
-
def __init__(self, config:
|
1087 |
super().__init__(config)
|
1088 |
self.padding_idx = config.pad_token_id
|
1089 |
self.vocab_size = config.vocab_size
|
@@ -1244,7 +1244,7 @@ class MiniCPM3ForCausalLM(MiniCPM3PreTrainedModel):
|
|
1244 |
|
1245 |
def __init__(self, config):
|
1246 |
super().__init__(config)
|
1247 |
-
self.model =
|
1248 |
self.vocab_size = config.vocab_size
|
1249 |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1250 |
|
@@ -1469,7 +1469,7 @@ class MiniCPM3ForSequenceClassification(MiniCPM3PreTrainedModel):
|
|
1469 |
def __init__(self, config):
|
1470 |
super().__init__(config)
|
1471 |
self.num_labels = config.num_labels
|
1472 |
-
self.model =
|
1473 |
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
1474 |
|
1475 |
# Initialize weights and apply final processing
|
|
|
48 |
replace_return_docstrings,
|
49 |
)
|
50 |
from transformers.utils.import_utils import is_torch_fx_available
|
51 |
+
from .configuration_minicpm import MiniCPM3Config
|
52 |
import re
|
53 |
|
54 |
try:
|
|
|
69 |
|
70 |
logger = logging.get_logger(__name__)
|
71 |
|
72 |
+
_CONFIG_FOR_DOC = "MiniCPM3Config"
|
73 |
|
74 |
|
75 |
def _get_unpad_data(attention_mask):
|
|
|
331 |
class MiniCPMAttention(nn.Module):
|
332 |
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
333 |
|
334 |
+
def __init__(self, config: MiniCPM3Config, layer_idx: Optional[int] = None):
|
335 |
super().__init__()
|
336 |
self.config = config
|
337 |
self.layer_idx = layer_idx
|
|
|
784 |
if output_attentions:
|
785 |
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
786 |
logger.warning_once(
|
787 |
+
"MiniCPM3Model is using MiniCPMSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
|
788 |
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
789 |
)
|
790 |
return super().forward(
|
|
|
884 |
|
885 |
|
886 |
class MiniCPMDecoderLayer(nn.Module):
|
887 |
+
def __init__(self, config: MiniCPM3Config, layer_idx: int):
|
888 |
super().__init__()
|
889 |
self.hidden_size = config.hidden_size
|
890 |
self.self_attn = MINICPM_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
|
|
|
968 |
and behavior.
|
969 |
|
970 |
Parameters:
|
971 |
+
config ([`MiniCPM3Config`]):
|
972 |
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
973 |
load the weights associated with the model, only the configuration. Check out the
|
974 |
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
|
|
980 |
MINICPM_START_DOCSTRING,
|
981 |
)
|
982 |
class MiniCPM3PreTrainedModel(PreTrainedModel):
|
983 |
+
config_class = MiniCPM3Config
|
984 |
base_model_prefix = "model"
|
985 |
supports_gradient_checkpointing = True
|
986 |
_no_split_modules = ["MiniCPMDecoderLayer"]
|
|
|
1080 |
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MiniCPMDecoderLayer`]
|
1081 |
|
1082 |
Args:
|
1083 |
+
config: MiniCPM3Config
|
1084 |
"""
|
1085 |
|
1086 |
+
def __init__(self, config: MiniCPM3Config):
|
1087 |
super().__init__(config)
|
1088 |
self.padding_idx = config.pad_token_id
|
1089 |
self.vocab_size = config.vocab_size
|
|
|
1244 |
|
1245 |
def __init__(self, config):
|
1246 |
super().__init__(config)
|
1247 |
+
self.model = MiniCPM3Model(config)
|
1248 |
self.vocab_size = config.vocab_size
|
1249 |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1250 |
|
|
|
1469 |
def __init__(self, config):
|
1470 |
super().__init__(config)
|
1471 |
self.num_labels = config.num_labels
|
1472 |
+
self.model = MiniCPM3Model(config)
|
1473 |
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
1474 |
|
1475 |
# Initialize weights and apply final processing
|