from typing import Dict, List, Optional, Tuple, Union, Literal from dataclasses import dataclass import json import math import logging import numpy as np from tqdm import tqdm from threading import Thread from PIL import Image import soundfile as sf from copy import deepcopy import torch import torch.nn as nn import torch.nn.functional as F import torch.nn.utils.parametrize as P from torch.nn.utils.parametrizations import weight_norm from torch.nn.utils.rnn import pad_sequence from vector_quantize_pytorch import GroupedResidualFSQ from vocos import Vocos from vocos.pretrained import instantiate_class from transformers import AutoProcessor, TextIteratorStreamer, PreTrainedModel, LogitsWarper, BertTokenizerFast, \ TopPLogitsWarper, TopKLogitsWarper, Qwen2PreTrainedModel, Qwen2ForCausalLM from transformers.modeling_outputs import ModelOutput, BaseModelOutputWithPast from transformers.models.whisper.modeling_whisper import WhisperEncoder, WhisperConfig, WHISPER_ATTENTION_CLASSES, ACT2FN from transformers.cache_utils import EncoderDecoderCache, DynamicCache from transformers import LlamaConfig, LlamaModel from .configuration_minicpm import MiniCPMOConfig, ConditionalChatTTSConfig from .modeling_navit_siglip import SiglipVisionTransformer from .resampler import Resampler logger = logging.getLogger(__name__) padding_logged = False class MiniCPMOPreTrainedModel(Qwen2PreTrainedModel): config_class = MiniCPMOConfig class MiniCPMO(MiniCPMOPreTrainedModel): def __init__(self, config): super().__init__(config) self.llm = Qwen2ForCausalLM(config) self.vpm = self.init_vision_module() self.apm = self.init_audio_module() self.tts = self.init_tts_module() self.vision_dim = self.vpm.embed_dim self.embed_dim = self.llm.config.hidden_size self.resampler = self.init_resampler(self.embed_dim, self.vision_dim) audio_output_dim = int(self.apm.config.encoder_ffn_dim // 4) embed_dim = self.llm.config.hidden_size self.audio_avg_pooler = nn.AvgPool1d(self.config.audio_pool_step, stride=self.config.audio_pool_step) self.audio_projection_layer = MultiModalProjector( in_dim=audio_output_dim, out_dim=embed_dim ) self.audio_encoder_layer = -1 self.processor = AutoProcessor.from_pretrained(self.config._name_or_path, trust_remote_code=True) self.terminators = ['<|im_end|>', ''] self.default_tts_chat_template = "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n<|spk_bos|><|spk|><|spk_eos|><|tts_bos|>' }}{% endif %}" # todo: merge in omni processor tts_text_tokenizer = BertTokenizerFast.from_pretrained("/mnt/data/user/tc_agi/xubokai/ChatTTS/asset/tokenizer") from .processing_minicpmo import ChatTTSProcessor self.tts_processor = ChatTTSProcessor(text_tokenizer=tts_text_tokenizer) # todo: merge to omni model self.vocos = None self.streaming_text_chunk_size = 11 self.force_no_stop=False self._generate = self.generate def initialize_vocos(self): feature_extractor = instantiate_class( args=(), init={'class_path': 'vocos.feature_extractors.MelSpectrogramFeatures', 'init_args': {'sample_rate': 24000, 'n_fft': 1024, 'hop_length': 256, 'n_mels': 100}} ) backbone = instantiate_class( args=(), init={'class_path': 'vocos.models.VocosBackbone', 'init_args': {'input_channels': 100, 'dim': 512, 'intermediate_dim': 1536, 'num_layers': 8}} ) head = instantiate_class( args=(), init={'class_path': 'vocos.heads.ISTFTHead', 'init_args': {'dim': 512, 'n_fft': 1024, 'hop_length': 256}} ) vocos = Vocos(feature_extractor, backbone, head).to("cuda").eval().to(torch.float32) vocos.load_state_dict( torch.load('/mnt/data/user/tc_agi/xubokai/ChatTTS/asset/Vocos.pt', weights_only=True, mmap=True)) return vocos def init_vision_module(self): # same as HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit add tgt_sizes if self.config._attn_implementation == 'flash_attention_2': self.config.vision_config._attn_implementation = 'flash_attention_2' else: # not suport sdpa self.config.vision_config._attn_implementation = 'eager' model = SiglipVisionTransformer(self.config.vision_config) if self.config.drop_vision_last_layer: model.encoder.layers = model.encoder.layers[:-1] setattr(model, 'embed_dim', model.embeddings.embed_dim) setattr(model, 'patch_size', model.embeddings.patch_size) return model def init_resampler(self, embed_dim, vision_dim): return Resampler( num_queries=self.config.query_num, embed_dim=embed_dim, num_heads=embed_dim // 128, kv_dim=vision_dim, adaptive=True ) def init_audio_module(self): model = MiniCPMWhisperEncoder(self.config.audio_config) return model def init_tts_module(self): model = ConditionalChatTTS(self.config.tts_config) return model def get_input_embeddings(self): return self.llm.get_input_embeddings() def set_input_embeddings(self, value): self.llm.embed_tokens = value def get_output_embeddings(self): return self.llm.lm_head def set_output_embeddings(self, new_embeddings): self.llm.lm_head = new_embeddings def set_decoder(self, decoder): self.llm = decoder def get_decoder(self): return self.llm def subsequent_chunk_mask( self, size: int, chunk_size: int, num_left_chunks: int = -1, device: torch.device = torch.device("cpu"), num_lookhead: int = 0 ) -> torch.Tensor: """Create mask for subsequent steps (size, size) with chunk size, this is for streaming encoder Args: size (int): size of mask chunk_size (int): size of chunk num_left_chunks (int): number of left chunks <0: use full chunk >=0: use num_left_chunks device (torch.device): "cpu" or "cuda" or torch.Tensor.device Returns: torch.Tensor: mask Examples: >>> subsequent_chunk_mask(4, 2) [[1, 1, 0, 0], [1, 1, 0, 0], [1, 1, 1, 1], [1, 1, 1, 1]] """ ret = torch.zeros(size, size, device=device, dtype=torch.bool) for i in range(size): if num_left_chunks < 0: start = 0 else: start = max((i // chunk_size - num_left_chunks) * chunk_size, 0) ending = min((i // chunk_size + 1) * chunk_size + num_lookhead, size) ret[i, start:ending] = True return ret def _get_feat_extract_output_lengths(self, input_lengths: torch.LongTensor): """ Computes the output length of the convolutional layers and the output length of the audio encoder """ input_lengths_after_cnn = (input_lengths - 1) // 2 + 1 input_lengths_after_pooling = (input_lengths_after_cnn - self.config.audio_pool_step) // self.config.audio_pool_step + 1 input_lengths_after_pooling = input_lengths_after_pooling.to(dtype=torch.int32) return input_lengths_after_cnn, input_lengths_after_pooling def get_vllm_embedding(self, data): if 'vision_hidden_states' not in data: dtype = self.llm.model.embed_tokens.weight.dtype device = self.llm.model.embed_tokens.weight.device tgt_sizes = data['tgt_sizes'] pixel_values_list = data['pixel_values'] vision_hidden_states = [] all_pixel_values = [] img_cnt = [] for pixel_values in pixel_values_list: img_cnt.append(len(pixel_values)) all_pixel_values.extend([i.flatten(end_dim=1).permute(1, 0) for i in pixel_values]) # exist image if all_pixel_values: tgt_sizes = [tgt_size for tgt_size in tgt_sizes if isinstance(tgt_size, torch.Tensor)] tgt_sizes = torch.vstack(tgt_sizes).type(torch.int32) max_patches = torch.max(tgt_sizes[:, 0] * tgt_sizes[:, 1]) all_pixel_values = torch.nn.utils.rnn.pad_sequence(all_pixel_values, batch_first=True, padding_value=0.0) B, L, _ = all_pixel_values.shape all_pixel_values = all_pixel_values.permute(0, 2, 1).reshape(B, 3, -1, L) patch_attn_mask = torch.zeros((B, 1, max_patches), dtype=torch.bool, device=device) for i in range(B): patch_attn_mask[i, 0, :tgt_sizes[i][0] * tgt_sizes[i][1]] = True vision_batch_size = self.config.vision_batch_size all_pixel_values = all_pixel_values.type(dtype) if B > vision_batch_size: hs = [] for i in range(0, B, vision_batch_size): start_idx = i end_idx = i + vision_batch_size tmp_hs = self.vpm(all_pixel_values[start_idx:end_idx], patch_attention_mask=patch_attn_mask[start_idx:end_idx], tgt_sizes=tgt_sizes[start_idx:end_idx]).last_hidden_state hs.append(tmp_hs) vision_embedding = torch.cat(hs, dim=0) else: vision_embedding = self.vpm(all_pixel_values, patch_attention_mask=patch_attn_mask, tgt_sizes=tgt_sizes).last_hidden_state vision_embedding = self.resampler(vision_embedding, tgt_sizes) start = 0 for pixel_values in pixel_values_list: img_cnt = len(pixel_values) if img_cnt > 0: vision_hidden_states.append(vision_embedding[start: start + img_cnt]) start += img_cnt else: vision_hidden_states.append([]) else: # no image if self.training: dummy_image = torch.zeros( (1, 3, 224, 224), device=device, dtype=dtype ) tgt_sizes = torch.Tensor([[(224 // self.config.patch_size), math.ceil(224 / self.config.patch_size)]]).type(torch.int32) dummy_feature = self.resampler(self.vpm(dummy_image).last_hidden_state, tgt_sizes) else: dummy_feature = [] for _ in range(len(pixel_values_list)): vision_hidden_states.append(dummy_feature) else: vision_hidden_states = data['vision_hidden_states'] if hasattr(self.llm.config, 'scale_emb'): vllm_embedding = self.llm.model.embed_tokens(data['input_ids']) * self.llm.config.scale_emb else: vllm_embedding = self.llm.model.embed_tokens(data['input_ids']) vision_hidden_states = [i.type(vllm_embedding.dtype) if isinstance( i, torch.Tensor) else i for i in vision_hidden_states] bs = len(data['input_ids']) for i in range(bs): cur_vs_hs = vision_hidden_states[i] if len(cur_vs_hs) > 0: cur_vllm_emb = vllm_embedding[i] cur_image_bound = data['image_bound'][i] if len(cur_image_bound) > 0: image_indices = torch.stack( [torch.arange(r[0], r[1], dtype=torch.long) for r in cur_image_bound] ).to(vllm_embedding.device) cur_vllm_emb = cur_vllm_emb.scatter(0, image_indices.view(-1, 1).repeat(1, cur_vllm_emb.shape[-1]), cur_vs_hs.view(-1, cur_vs_hs.shape[-1])) # cur_vllm_emb.scatter_(0, image_indices.view(-1, 1).repeat(1, cur_vllm_emb.shape[-1]), # cur_vs_hs.view(-1, cur_vs_hs.shape[-1])) elif self.training: cur_vllm_emb += cur_vs_hs[0].mean() * 0 return vllm_embedding, vision_hidden_states def get_audio_embedding(self, data, chunk_length=-1, dummy=True): dtype = self.apm.embed_positions.weight.dtype device = self.apm.embed_positions.weight.device wavforms = data.get('audio_features', []) # (bs, 80, frames) or [], 多条数据多个音频是提前 padding 好 audio_feature_lens_raw = data.get('audio_feature_lens', []) # list, [[x1, x2], [y1], [z1]] # exist audio if len(wavforms) > 0: audio_feature_lens = torch.hstack(audio_feature_lens_raw) batch_size, _, max_mel_seq_len = wavforms.shape max_seq_len = (max_mel_seq_len - 1) // 2 + 1 # 原本代码是(max_mel_seq_len - 2) // 2 + 1 如果输入长度是奇数的话就会差1 # Create a sequence tensor of shape (batch_size, max_seq_len) seq_range = ( torch.arange(0, max_seq_len, dtype=audio_feature_lens.dtype, device=audio_feature_lens.device) .unsqueeze(0) .expand(batch_size, max_seq_len) ) lengths_expand = audio_feature_lens.unsqueeze(1).expand(batch_size, max_seq_len) # Create mask padding_mask = seq_range >= lengths_expand # 1 for padded values audio_attention_mask_ = padding_mask.view(batch_size, 1, 1, max_seq_len).expand( batch_size, 1, max_seq_len, max_seq_len ) audio_attention_mask = audio_attention_mask_.to( dtype=self.apm.conv1.weight.dtype, device=self.apm.conv1.weight.device ) if chunk_length > 0: chunk_num_frame = int(chunk_length * 50) chunk_mask = self.subsequent_chunk_mask( size=max_seq_len, chunk_size=chunk_num_frame, num_left_chunks=-1, device=audio_attention_mask_.device ) audio_attention_mask_ = torch.logical_or(audio_attention_mask_, torch.logical_not(chunk_mask)) audio_attention_mask[audio_attention_mask_] = float("-inf") audio_states = self.apm( wavforms, output_hidden_states=True, attention_mask=audio_attention_mask).hidden_states[self.audio_encoder_layer] audio_embeds = self.audio_projection_layer(audio_states) audio_embeds = audio_embeds.transpose(1, 2) audio_embeds = self.audio_avg_pooler(audio_embeds) audio_embeds = audio_embeds.transpose(1, 2) _, feature_lens_after_pooling = self._get_feat_extract_output_lengths(audio_feature_lens) num_audio_tokens = feature_lens_after_pooling final_audio_embeds = [] idx = 0 for i in range(len(audio_feature_lens_raw)): target_audio_embeds = [] for _ in range(len(audio_feature_lens_raw[i])): target_audio_embeds.append(audio_embeds[idx, :num_audio_tokens[idx], :]) idx += 1 final_audio_embeds.append(target_audio_embeds) return final_audio_embeds elif self.training and dummy: dummy_wavs = torch.zeros((1, 80, 100), device=device, dtype=dtype) audio_states = self.apm(dummy_wavs, output_hidden_states=True).hidden_states[self.audio_encoder_layer] audio_embeds = self.audio_projection_layer(audio_states) audio_embeds = audio_embeds.transpose(1, 2) audio_embeds = self.audio_avg_pooler(audio_embeds) audio_embeds = audio_embeds.transpose(1, 2) return [audio_embeds] else: return [] def get_omni_embedding(self, data, input_embeddings, chunk_length=-1): audio_embeddings = self.get_audio_embedding(data, chunk_length) bs = len(input_embeddings) if len(data.get('audio_features', [])) > 0: assert len(audio_embeddings) == len(input_embeddings) if len(audio_embeddings) > 0: audio_bounds = data['audio_bounds'] if self.config.stream_input: for i in range(bs): audio_embs = torch.cat(audio_embeddings[i], dim=0).to(device=input_embeddings.device, dtype=input_embeddings.dtype) audio_start_pos = 0 for bound in audio_bounds[i]: audio_len = bound[1] - bound[0] input_embeddings[0, bound[0]:bound[1]] = audio_embs[ audio_start_pos:audio_start_pos + audio_len, :] audio_start_pos += audio_len else: for i in range(bs): audio_embs = audio_embeddings[i] bounds = audio_bounds[i] for embs, bound in zip(audio_embs, bounds): audio_indices = torch.arange(bound[0], bound[1], dtype=torch.long).to( input_embeddings.device) if embs.shape[0] != len(audio_indices): print(f"Sample {i}:") print(f" Bounds: {bound}, Indices Length: {len(audio_indices)}") print(f" Embeddings Shape: {embs.shape}") print(f" Input Embedding Shape at Indices: {input_embeddings[i, audio_indices].shape}") raise ValueError( f"Shape mismatch: Trying to assign embeddings of shape {embs.shape} " f"to input indices of length {len(audio_indices)}" ) input_embeddings[i, audio_indices] = embs.to(input_embeddings.dtype) elif self.training: for i in range(bs): # dummy audio_embedings input_embeddings = input_embeddings + audio_embeddings[0].mean() * 0 return input_embeddings def forward(self, data, **kwargs): vllm_embedding, vision_hidden_states = self.get_vllm_embedding(data) vllm_embedding = self.get_omni_embedding(data, input_embeddings=vllm_embedding, chunk_length=self.config.audio_chunk_length) position_ids = data["position_ids"] if position_ids.dtype != torch.int64: position_ids = position_ids.long() for key in ['input_ids', 'inputs_embeds', 'position_ids']: if key in kwargs: del kwargs[key] return self.llm( input_ids=None, position_ids=position_ids, inputs_embeds=vllm_embedding, **kwargs ) def _decode(self, inputs_embeds, tokenizer, attention_mask, **kwargs): terminators = [tokenizer.convert_tokens_to_ids(i) for i in self.terminators] outputs = self.llm.generate( inputs_embeds=inputs_embeds, pad_token_id=0, eos_token_id=terminators, attention_mask=attention_mask, output_hidden_states=True, return_dict_in_generate=True, **kwargs ) return outputs def _decode_stream(self, inputs_embeds, tokenizer, **kwargs): terminators = [tokenizer.convert_tokens_to_ids(i) for i in self.terminators] streamer = TextIteratorStreamer(tokenizer=tokenizer) generation_kwargs = { 'inputs_embeds': inputs_embeds, 'pad_token_id': 0, 'eos_token_id': terminators, 'streamer': streamer } generation_kwargs.update(kwargs) thread = Thread(target=self.llm.generate, kwargs=generation_kwargs) thread.start() return streamer def _decode_text(self, result_ids, tokenizer): terminators = [tokenizer.convert_tokens_to_ids(i) for i in self.terminators] result_text = [] for result in result_ids: result = result[result != 0] if result[0] == tokenizer.bos_id: result = result[1:] if result[-1] in terminators: result = result[:-1] result_text.append(tokenizer.decode(result).strip()) return result_text def generate( self, input_ids=None, pixel_values=None, tgt_sizes=None, audio_features=[], audio_feature_lens=None, image_bound=None, audio_bounds=None, spk_bounds=None, attention_mask=None, tokenizer=None, vision_hidden_states=None, stream=False, **kwargs ): assert input_ids is not None assert len(input_ids) == len(pixel_values) model_inputs = { "input_ids": input_ids, "audio_features": audio_features, "audio_feature_lens": audio_feature_lens, "image_bound": image_bound, "audio_bounds": audio_bounds, "spk_bounds": spk_bounds, } if vision_hidden_states is None: model_inputs["pixel_values"] = pixel_values model_inputs['tgt_sizes'] = tgt_sizes else: model_inputs["vision_hidden_states"] = vision_hidden_states model_output = {} with torch.inference_mode(): model_inputs["inputs_embeds"], vision_hidden_states = self.get_vllm_embedding(model_inputs) model_inputs["inputs_embeds"] = self.get_omni_embedding( model_inputs, input_embeddings=model_inputs["inputs_embeds"], chunk_length=self.config.audio_chunk_length ) if stream: result = self._decode_stream(model_inputs["inputs_embeds"], tokenizer, **kwargs) # if stream return TextIteratorStreamer and output is empty outputs = {} else: outputs = self._decode(model_inputs["inputs_embeds"], tokenizer, attention_mask, **kwargs) result = self._decode_text(outputs.sequences, tokenizer) return result, outputs def chat( self, image, msgs, tokenizer, processor=None, vision_hidden_states=None, max_new_tokens=2048, min_new_tokens=0, sampling=True, max_inp_length=8192, stream=False, stream_input=True, omni_input=False, max_slice_nums=None, use_image_id=None, use_tts=False, output_audio_path=None, return_spk_embed=False, **kwargs ): if isinstance(msgs[0], list): batched = True else: batched = False msgs_list = msgs images_list = image if batched is False: images_list, msgs_list = [images_list], [msgs_list] else: assert images_list is None, "Please integrate image to msgs when using batch inference." images_list = [None] * len(msgs_list) assert len(images_list) == len(msgs_list), "The batch dim of images_list and msgs_list should be the same." if processor is None: if self.processor is None: self.processor = AutoProcessor.from_pretrained(self.config._name_or_path, trust_remote_code=True) processor = self.processor assert self.config.query_num == processor.image_processor.image_feature_size, "These two values should be the same. Check `config.json` and `preprocessor_config.json`." assert self.config.patch_size == processor.image_processor.patch_size, "These two values should be the same. Check `config.json` and `preprocessor_config.json`." assert self.config.use_image_id == processor.image_processor.use_image_id, "These two values should be the same. Check `config.json` and `preprocessor_config.json`." assert self.config.slice_config.max_slice_nums == processor.image_processor.max_slice_nums, "These two values should be the same. Check `config.json` and `preprocessor_config.json`." assert self.config.slice_mode == processor.image_processor.slice_mode, "These two values should be the same. Check `config.json` and `preprocessor_config.json`." prompts_lists = [] input_images_list = [] input_audios_list = [] audio_parts_list = [] for image, msgs in zip(images_list, msgs_list): if isinstance(msgs, str): msgs = json.loads(msgs) copy_msgs = deepcopy(msgs) assert len(msgs) > 0, "msgs is empty" assert sampling or not stream, "if use stream mode, make sure sampling=True" if image is not None and isinstance(copy_msgs[0]["content"], str): copy_msgs[0]["content"] = [image, copy_msgs[0]["content"]] images = [] audios = [] audio_parts = [] for i, msg in enumerate(copy_msgs): role = msg["role"] content = msg["content"] assert role in ["system", "user", "assistant"] if i == 0: assert role in ["user", "system"], "The role of first msg should be user" if isinstance(content, str): content = [content] cur_msgs = [] for c in content: if isinstance(c, Image.Image): images.append(c) cur_msgs.append("./") elif isinstance(c, np.ndarray): # audio audios.append(c) audio_parts.append(i) cur_msgs.append("") elif isinstance(c, str): cur_msgs.append(c) if omni_input: msg["content"] = "".join(cur_msgs) else: msg["content"] = "\n".join(cur_msgs) prompts_lists.append( processor.tokenizer.apply_chat_template( copy_msgs, tokenize=False, add_generation_prompt=True, chat_template=self.default_tts_chat_template if use_tts else None ) ) input_images_list.append(images) input_audios_list.append(audios) audio_parts_list.append(audio_parts) inputs = processor( prompts_lists, input_images_list, input_audios_list, audio_parts_list, max_slice_nums=max_slice_nums, use_image_id=use_image_id, stream_input=stream_input, return_tensors="pt", max_length=max_inp_length ).to(self.device) if sampling: generation_config = { "top_p": 0.8, "top_k": 100, "temperature": 0.7, "do_sample": True, "repetition_penalty": 1.05 } else: generation_config = { "num_beams": 3, "repetition_penalty": 1.2, } if min_new_tokens > 0: generation_config['min_new_tokens'] = min_new_tokens generation_config.update( (k, kwargs[k]) for k in generation_config.keys() & kwargs.keys() ) inputs.pop("image_sizes") with torch.inference_mode(): res, outputs = self.generate( **inputs, tokenizer=tokenizer, max_new_tokens=max_new_tokens, vision_hidden_states=vision_hidden_states, stream=stream, **generation_config ) if stream: def stream_gen(): for text in res: for term in self.terminators: text = text.replace(term, '') yield text return stream_gen() else: if batched: answer = res else: answer = res[0] if use_tts and output_audio_path: mel_spec = self._generate_mel_spec(inputs, outputs, answer) self.decode_mel_to_audio(mel_spec, output_audio_path) if return_spk_embed: spk_embeds = self._get_last_spk_embeds(inputs, outputs) return answer, spk_embeds else: return answer def prepare_tts_text(self, text): tts_tokens = self.tts_processor.text_tokenizer.encode(text, add_special_tokens=False) tts_tokens_len = len(tts_tokens) if tts_tokens_len < self.tts.streaming_text_reserved_len: num_pad_tokens = self.tts.streaming_text_reserved_len - tts_tokens_len pad_str = "[Etts]" + "[PAD]" * (num_pad_tokens - 1) else: tts_tokens = tts_tokens[0: self.tts.streaming_text_reserved_len] tts_tokens_len = len(tts_tokens) text = self.tts_processor.text_tokenizer.decode(tts_tokens, add_special_tokens=False) pad_str = "" spk_emb_placeholder_tts = "[spk_emb]" * self.tts.num_spk_embs new_text_tts = f"[Stts]{spk_emb_placeholder_tts}{text}{pad_str}[Ptts]" return new_text_tts, tts_tokens_len def _build_streaming_mask(self, tts_tokens_len): tts_sequence_full_length = 1 + self.tts.num_spk_embs * self.tts.use_speaker_embedding + self.tts.streaming_text_reserved_len + 1 streaming_attention_mask = torch.zeros(tts_sequence_full_length, dtype=torch.int8) streaming_attention_mask[0: 1 + 1 + tts_tokens_len + 1] = 1 streaming_attention_mask[-1] = 1 return streaming_attention_mask def _get_last_spk_embeds(self, inputs, outputs): last_hidden_states = [hs[-1] for hs in outputs.hidden_states] # batch = 1 last_hidden_states = torch.vstack([i[0] for i in last_hidden_states]) # last spk spk_bound = inputs['spk_bounds'][0][-1] spk_embeds = last_hidden_states[spk_bound[0]: spk_bound[1]] return spk_embeds def _generate_mel_spec(self, inputs, outputs, text): spk_embeds = self._get_last_spk_embeds(inputs, outputs) gen_text = text.replace('<|tts_eos|>', '') tts_text, tts_token_lens = self.prepare_tts_text(gen_text) tts_inputs = self.tts_processor.text_tokenizer.encode(tts_text, add_special_tokens=False) tts_input_ids = torch.Tensor(tts_inputs).unsqueeze(0).to("cuda", dtype=torch.long) streaming_tts_text_mask = self._build_streaming_mask(tts_token_lens).to(device=self.tts.device) logits_warpers, logits_processors = gen_logits( num_code=626, top_P=self.tts.top_p, top_K=self.tts.top_k, repetition_penalty=self.tts.repetition_penalty ) condition_length = 1 + self.tts.use_speaker_embedding * self.tts.num_spk_embs + self.tts.streaming_text_reserved_len + 1 dtype = self.tts.emb_text.weight.dtype emb = torch.zeros(1, condition_length, self.tts.num_vq, dtype=dtype, device=self.tts.device) past_key_values = [ ( torch.zeros(1, self.tts.config.num_attention_heads, condition_length - 1, self.tts.config.hidden_size // self.tts.config.num_attention_heads, dtype=emb.dtype, device=self.tts.device), torch.zeros(1, self.tts.config.num_attention_heads, condition_length - 1, self.tts.config.hidden_size // self.tts.config.num_attention_heads, dtype=emb.dtype, device=self.tts.device) ) for _ in range(self.tts.config.num_hidden_layers) ] audio_input_ids = torch.zeros(1, condition_length, self.tts.num_vq, dtype=torch.long, device=self.tts.device) eos_lab = False for chunk_idx in range(math.ceil(emb.shape[1] / self.streaming_text_chunk_size)): if chunk_idx == 0: begin = chunk_idx * self.streaming_text_chunk_size + 0 end = (chunk_idx + 1) * self.streaming_text_chunk_size + 1 + self.tts.use_speaker_embedding * self.tts.num_spk_embs else: begin = chunk_idx * self.streaming_text_chunk_size + 1 + self.tts.use_speaker_embedding * self.tts.num_spk_embs end = min((chunk_idx + 1) * self.streaming_text_chunk_size + 1 + self.tts.use_speaker_embedding * self.tts.num_spk_embs, condition_length - 1) if end - begin < 1: print(f"BKing has break by the end of {end} and begin of {begin}") else: text_input_ids = tts_input_ids[:, begin: end] position_ids = torch.arange(begin, end, dtype=torch.long, device=self.tts.device).unsqueeze(0) # print("预填充块:", begin, end) if begin == 0: past_key_values = self.tts.prefill_text( input_ids=text_input_ids, position_ids=position_ids, past_key_values=past_key_values, lm_spk_emb_last_hidden_states=spk_embeds ) else: past_key_values = self.tts.prefill_text( input_ids=text_input_ids, position_ids=position_ids, past_key_values=past_key_values ) outputs = self.tts.generate( input_ids=audio_input_ids, past_key_values=past_key_values, streaming_tts_text_mask=streaming_tts_text_mask, max_new_token=25, force_no_stop=self.force_no_stop, temperature=torch.tensor([0.1, 0.3, 0.1, 0.3], dtype=torch.float, device=self.tts.device), eos_token=torch.tensor([625], dtype=torch.long, device=self.tts.device), logits_warpers=logits_warpers, logits_processors=logits_processors, ) audio_input_ids = outputs.audio_input_ids past_key_values = outputs.past_key_values if outputs.finished: print("Generation finished.") eos_lab = True break if not eos_lab: print("Generation not finished.") while True: outputs = self.tts.generate( input_ids=audio_input_ids, past_key_values=past_key_values, streaming_tts_text_mask=streaming_tts_text_mask, max_new_token=25, force_no_stop=self.force_no_stop, temperature=torch.tensor([0.1, 0.3, 0.1, 0.3], dtype=torch.float, device=self.tts.device), eos_token=torch.tensor([625], dtype=torch.long, device=self.tts.device), logits_warpers=logits_warpers, logits_processors=logits_processors, ) audio_input_ids = outputs.audio_input_ids past_key_values = outputs.past_key_values if outputs.finished: print("Generation finished.") break if outputs.new_ids.shape[1] > 2048: print("Generation not finished but break.") break mel_spec = self.tts.decode_to_mel_specs(outputs.new_ids) print("Mel spectrogram generated.") return mel_spec def decode_mel_to_audio(self, mel_spec, output_path="test.wav"): if self.vocos is None: self.vocos = self.initialize_vocos() with torch.inference_mode(): wav_numpy = self.vocos.decode(mel_spec.float()).cpu().numpy().squeeze() sf.write(output_path, wav_numpy, samplerate=24000) print(f"Audio saved to {output_path}.") class MiniCPMWhisperEncoderLayer(nn.Module): def __init__(self, config: WhisperConfig, layer_idx: int = None): super().__init__() self.embed_dim = config.d_model self.self_attn = WHISPER_ATTENTION_CLASSES[config._attn_implementation]( embed_dim=self.embed_dim, num_heads=config.encoder_attention_heads, dropout=config.attention_dropout, config=config, layer_idx=layer_idx ) self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.activation_dropout = config.activation_dropout self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim) self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim) self.final_layer_norm = nn.LayerNorm(self.embed_dim) def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, layer_head_mask: torch.Tensor, output_attentions: bool = False, past_key_values: Optional[EncoderDecoderCache] = None, use_cache: Optional[bool] = False, ) -> torch.Tensor: residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) hidden_states, attn_weights, past_key_values = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask, output_attentions=output_attentions, past_key_value=past_key_values ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states if hidden_states.dtype == torch.float16 and ( torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any() ): clamp_value = torch.finfo(hidden_states.dtype).max - 1000 hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) if use_cache: outputs += (past_key_values,) return outputs class MiniCPMWhisperEncoder(WhisperEncoder): def __init__(self, config: WhisperConfig): super().__init__(config) self.layers = nn.ModuleList([ MiniCPMWhisperEncoderLayer(config, layer_idx=i) for i in range(config.encoder_layers) ]) def forward( self, input_features, attention_mask=None, head_mask=None, output_attentions=None, output_hidden_states=None, return_dict=None, past_key_values: Optional[EncoderDecoderCache] = None, use_cache: Optional[bool] = None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # Ignore copy input_features = input_features.to(dtype=self.conv1.weight.dtype, device=self.conv1.weight.device) inputs_embeds = nn.functional.gelu(self.conv1(input_features)) inputs_embeds = nn.functional.gelu(self.conv2(inputs_embeds)) inputs_embeds = inputs_embeds.permute(0, 2, 1) embed_pos = self.embed_positions.weight past_key_values_length = 0 if use_cache: if past_key_values is None: past_key_values = EncoderDecoderCache(DynamicCache(), DynamicCache()) elif isinstance(past_key_values, list): past_key_values = EncoderDecoderCache( DynamicCache.from_legacy_cache(past_key_values), DynamicCache()) elif isinstance(past_key_values, DynamicCache): past_key_values = EncoderDecoderCache(past_key_values, DynamicCache()) else: pass past_key_values_length = past_key_values.self_attention_cache.get_usable_length(inputs_embeds.shape[1]) if inputs_embeds.shape[1] + past_key_values_length > embed_pos.shape[0]: if not padding_logged: padding_logged = True logger.warning("seems the audio is longer than 30s. repeating the last part of the audio") embed_pos_front = embed_pos[past_key_values_length:, :] embed_pos = torch.cat(( embed_pos_front, torch.repeat_interleave( embed_pos[-1, :].unsqueeze(0), inputs_embeds.shape[1] - embed_pos.shape[0] + past_key_values_length, dim=0 ) )) else: embed_pos = embed_pos[past_key_values_length:inputs_embeds.shape[1] + past_key_values_length, :] else: embed_pos = embed_pos[:inputs_embeds.shape[1], :] hidden_states = inputs_embeds + embed_pos hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None # check if head_mask has a correct number of layers specified if desired if head_mask is not None: assert head_mask.size()[0] == ( len(self.layers) ), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}." for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) to_drop = False if self.training: dropout_probability = torch.rand([]) if dropout_probability < self.layerdrop: # skip the layer to_drop = True # Ignore copy if to_drop: layer_outputs = (None, None) else: if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( encoder_layer.__call__, hidden_states, attention_mask, (head_mask[idx] if head_mask is not None else None), output_attentions, past_key_values, use_cache ) else: layer_outputs = encoder_layer( hidden_states, attention_mask, layer_head_mask=(head_mask[idx] if head_mask is not None else None), output_attentions=output_attentions, past_key_values=past_key_values, use_cache=use_cache ) hidden_states = layer_outputs[0] if use_cache: next_encoder_cache = layer_outputs[2 if output_attentions else 1] else: next_encoder_cache = None if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) hidden_states = self.layer_norm(hidden_states) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return BaseModelOutputWithPast( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions, past_key_values=next_encoder_cache ) # dvae module class ConvNeXtBlock(nn.Module): def __init__( self, dim: int, intermediate_dim: int, kernel: int, dilation: int, layer_scale_init_value: float = 1e-6, ): # ConvNeXt Block copied from Vocos. super().__init__() self.dwconv = nn.Conv1d( dim, dim, kernel_size=kernel, padding=dilation * (kernel // 2), dilation=dilation, groups=dim, ) self.norm = nn.LayerNorm(dim, eps=1e-6) self.pwconv1 = nn.Linear( dim, intermediate_dim ) self.act = nn.GELU() self.pwconv2 = nn.Linear(intermediate_dim, dim) self.coef = ( nn.Parameter(layer_scale_init_value * torch.ones(dim), requires_grad=True) if layer_scale_init_value > 0 else None ) def forward(self, x: torch.Tensor, cond=None) -> torch.Tensor: residual = x y = self.dwconv(x) y.transpose_(1, 2) # (B, C, T) -> (B, T, C) x = self.norm(y) del y y = self.pwconv1(x) del x x = self.act(y) del y y = self.pwconv2(x) del x if self.coef is not None: y *= self.coef y.transpose_(1, 2) # (B, T, C) -> (B, C, T) x = y + residual del y return x class GFSQ(nn.Module): def __init__( self, dim: int, levels: List[int], G: int, R: int, eps=1e-5, transpose=True, ): super(GFSQ, self).__init__() self.quantizer = GroupedResidualFSQ( dim=dim, levels=list(levels), num_quantizers=R, groups=G, ) self.n_ind = math.prod(levels) self.eps = eps self.transpose = transpose self.G = G self.R = R def _embed(self, x: torch.Tensor): if self.transpose: x = x.transpose(1, 2) x = x.view(x.size(0), x.size(1), self.G, self.R).permute(2, 0, 1, 3) feat = self.quantizer.get_output_from_indices(x) return feat.transpose_(1, 2) if self.transpose else feat def __call__(self, x: torch.Tensor) -> torch.Tensor: return super().__call__(x) def forward(self, x: torch.Tensor) -> torch.Tensor: if self.transpose: x.transpose_(1, 2) _, ind = self.quantizer(x) ind = ind.permute(1, 2, 0, 3).contiguous() ind = ind.view(ind.size(0), ind.size(1), -1) return ind.transpose_(1, 2) if self.transpose else ind class DVAEDecoder(nn.Module): def __init__( self, idim: int, odim: int, n_layer=12, bn_dim=64, hidden=256, kernel=7, dilation=2, up=False, ): super().__init__() self.up = up self.conv_in = nn.Sequential( nn.Conv1d(idim, bn_dim, 3, 1, 1), nn.GELU(), nn.Conv1d(bn_dim, hidden, 3, 1, 1), ) self.decoder_block = nn.ModuleList( [ ConvNeXtBlock( hidden, hidden * 4, kernel, dilation, ) for _ in range(n_layer) ] ) self.conv_out = nn.Conv1d(hidden, odim, kernel_size=1, bias=False) def forward(self, x: torch.Tensor, conditioning=None) -> torch.Tensor: # B, C, T y = self.conv_in(x) del x for f in self.decoder_block: y = f(y, conditioning) x = self.conv_out(y) del y return x class DVAE(nn.Module): def __init__( self, ): super().__init__() coef = torch.rand(100) self.coef = nn.Parameter(coef.unsqueeze(0).unsqueeze_(2)) self.downsample_conv = nn.Sequential( nn.Conv1d(100, 512, 3, 1, 1), nn.GELU(), nn.Conv1d(512, 512, 4, 2, 1), nn.GELU(), ) self.encoder = DVAEDecoder( idim=512, odim=1024, hidden=256, n_layer=12, bn_dim=128, ) self.decoder = DVAEDecoder( idim=512, odim=512, hidden=256, n_layer=12, bn_dim=128, ) self.out_conv = nn.Conv1d(512, 100, 3, 1, 1, bias=False) self.vq_layer = GFSQ( dim=1024, levels=(5, 5, 5, 5), G=2, R=2, ) @torch.inference_mode() def forward( self, inp: torch.Tensor, mode: Literal["encode", "decode"] = "decode" ) -> torch.Tensor: if mode == "encode" and hasattr(self, "encoder") and self.vq_layer is not None: mel = inp.clone() x: torch.Tensor = self.downsample_conv( torch.div(mel, self.coef.view(100, 1).expand(mel.shape), out=mel), ).unsqueeze_(0) del mel x = self.encoder(x) ind = self.vq_layer(x) del x return ind if self.vq_layer is not None: vq_feats = self.vq_layer._embed(inp) else: vq_feats = inp vq_feats = ( vq_feats.view( (vq_feats.size(0), 2, vq_feats.size(1) // 2, vq_feats.size(2)), ) .permute(0, 2, 3, 1) .flatten(2) ) dec_out = self.out_conv( self.decoder( x=vq_feats, ), ) del vq_feats return torch.mul(dec_out, self.coef, out=dec_out) # tts module def apply_spk_emb( input_ids: torch.Tensor = None, spk_emb: torch.Tensor = None, input_embeds: torch.Tensor = None, spk_emb_token_id: int = 0, num_spk_embs: int = 1, ): """ Replace consecutive speaker embedding placeholders in input_embeds with pre-prepared speaker embeddings. This is an in-place replacement, no new tensor is created, so no value is returned. Args: input_ids (torch.Tensor): Input ID tensor, shape [batch_size, seq_len_max] spk_emb (torch.Tensor): Speaker embedding tensor, shape [batch_size, num_spk_emb, hidden_dim] input_embeds (torch.Tensor): Input embedding tensor, shape [batch_size, seq_len_max, hidden_dim] spk_emb_token_id (int): ID of the speaker embedding token num_spk_embs (int): Number of speaker embeddings Returns: None """ batch_size = input_ids.shape[0] for idx in range(batch_size): input_ids_ = input_ids[idx] # [seq_len_max] spk_emb_ = spk_emb[idx] # [num_spk_emb] mask_ = input_ids_ == spk_emb_token_id # [batch_size, seq_len_max] nonzero_position_idx = mask_.nonzero(as_tuple=False) # [num_spk_emb, 1] assert nonzero_position_idx.shape[0] == num_spk_embs begin_idx = nonzero_position_idx.min() end_idx = nonzero_position_idx.max() input_embeds[idx, begin_idx: end_idx + 1, :] = spk_emb_ return def make_streaming_chunk_mask( input_embeds: torch.Tensor, tts_text_scopes: List[List[int]], tts_audio_scopes: List[List[int]], tts_text_masks: List[torch.Tensor], min_chunk_num_token: int = 5, max_chunk_num_token: int = 7, streaming_audio_chunk_size: int = 50, ): """ Create a look-ahead chunked attention mask that allows the TTS transformer to see only the first M tokens when generating each N to N+1 seconds of audio, enabling streaming TTS. Args: input_embeds (torch.Tensor): Input embeddings combining text and audio, shape [batch_size, seq_len, hidden_dim] tts_text_scopes (List[List[int]]): Range of text tokens for each sample tts_audio_scopes (List[List[int]]): Range of audio tokens for each sample tts_text_masks (List[torch.Tensor]): Text masks for each sample min_chunk_num_token (int): Minimum number of new text tokens the model can see per audio chunk max_chunk_num_token (int): Maximum number of new text tokens the model can see per audio chunk streaming_audio_chunk_size (int): Size of audio chunk, 50 corresponds to approximately 1 second of audio Returns: torch.Tensor: 4D causal mask with shape [batch_size, 1, seq_len, seq_len] Example: Input sequence: [t1, t2, t3, t4, t5, [Ptts], a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, ...] Output 4D causal mask: ------- text positions ------- [0] <- here is [Stts] [0, 0] <- here is [spk_emb] * N [0, 0, 0] [0, 0, 0, 0] [0, 0, 0, 0, 0] ------- audio positions -------- [0, 0, -inf, -inf, -inf, 0] <- here is [Ptts], [Ptts]'s last hidden state should predict the first audio token v- here is [Ptts] [0, 0, -inf, -inf, -inf, 0, 0] [0, 0, -inf, -inf, -inf, 0, 0, 0] [0, 0, -inf, -inf, -inf, 0, 0, 0, 0] [0, 0, -inf, -inf, -inf, 0, 0, 0, 0, 0] [0, 0, -inf, -inf, -inf, 0, 0, 0, 0, 0, 0] # end of first 1s audio chunk [0, 0, 0 , -inf, -inf, 0, 0, 0, 0, 0, 0, 0] [0, 0, 0 , -inf, -inf, 0, 0, 0, 0, 0, 0, 0, 0] [0, 0, 0 , -inf, -inf, 0, 0, 0, 0, 0, 0, 0, 0, 0] [0, 0, 0 , -inf, -inf, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] [0, 0, 0 , -inf, -inf, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] """ # Create a complete attention mask for input embeds [batch_size, seq_len], without considering audio mask as audio is always at the end batch_size = input_embeds.shape[0] input_embeds_attention_mask = torch.ones(input_embeds.shape[0], input_embeds.shape[1], dtype=torch.int8, device=input_embeds.device) for idx in range(batch_size): input_embeds_attention_mask[idx, tts_text_scopes[idx][0]: tts_text_scopes[idx][1]] = tts_text_masks[idx] # Initialize a standard upper triangular causal mask dtype = input_embeds.dtype device = input_embeds.device min_dtype = torch.finfo(dtype).min sequence_length = input_embeds.shape[1] causal_mask = torch.full((sequence_length, sequence_length), fill_value=min_dtype, dtype=dtype, device=device) if sequence_length != 1: causal_mask = torch.triu(causal_mask, diagonal=1) else: raise ValueError("sequence_length of tts could not be 1.") causal_mask = causal_mask.unsqueeze(0).repeat(input_embeds.shape[0], 1, 1) # For each data sample for idx in range(input_embeds.shape[0]): tts_audio_scope = tts_audio_scopes[idx] tts_text_scope = tts_text_scopes[idx] audio_token_start = tts_audio_scope[0] audio_duration = tts_audio_scope[1] - tts_audio_scope[0] # Record which text chunk the current audio chunk can see up to text_pivot = 0 num_valid_text_tokens = torch.sum(tts_text_masks[idx]).item() - 1 # [Ptts] excluded # How many audio chunks are in total, the num of buckets should be smaller as possible num_buckets = max(1, math.floor(audio_duration / streaming_audio_chunk_size)) # print("num_buckets", num_buckets) num_text_tokens_per_audio_chunk = math.ceil( num_valid_text_tokens / num_buckets) # 这里 10 是超参数 比如每个audio chunk最多说10个文本token,再多就不正常了。 if num_text_tokens_per_audio_chunk > 10: num_text_tokens_per_audio_chunk = 10 elif num_text_tokens_per_audio_chunk < 4: num_text_tokens_per_audio_chunk = 4 else: pass # print("num_text_tokens_per_audio_chunk", num_text_tokens_per_audio_chunk) # For each chunk of audio for chunk_idx in range(math.ceil(audio_duration / streaming_audio_chunk_size)): audio_chunk_start = audio_token_start + chunk_idx * streaming_audio_chunk_size audio_chunk_end = audio_token_start + (chunk_idx + 1) * streaming_audio_chunk_size # New text seen by this new audio chunk new_text_this_chunk = num_text_tokens_per_audio_chunk # The right bound of visible text tokens text_pivot = min(new_text_this_chunk + text_pivot, num_valid_text_tokens) # Mask all text chunks after the visible ones # -> [text_pivot, len(tts_text_scope)-1] excluding [Ptts] causal_mask[ idx, audio_chunk_start - 1: audio_chunk_end - 1, tts_text_scope[0] + text_pivot: tts_text_scope[1] - 1 ] = min_dtype # Mask the padding parts in tts_text_masks (no position will attend to it) causal_mask[idx, :, input_embeds_attention_mask[idx] == 0] = min_dtype # Add extra dimensions, [batch_size, seq_len, seq_len] -> [batch_size, 1, seq_len, seq_len] causal_mask = causal_mask.unsqueeze(1) return causal_mask def make_streaming_chunk_mask_generation( inputs_embeds: torch.Tensor, past_seen_tokens: int, streaming_tts_text_mask: torch.Tensor, streaming_reserved_length: int = 300, streaming_audio_chunk_size: int = 50, streaming_text_chunk_size: int = 10, num_spk_emb: int = 1, use_spk_emb: bool = True, ) -> torch.Tensor: """ Determine which `text` tokens the model can attend to when generating each chunk of `audio` tokens. This function creates a mask that allows the model to attend to a specific chunk of text tokens when generating each chunk of audio tokens, enabling streaming TTS generation. Args: inputs_embeds (torch.Tensor): Input embeddings tensor. past_seen_tokens (int): Number of tokens already seen by the model. streaming_tts_text_mask (torch.Tensor): Mask for the text tokens. streaming_reserved_length (int, optional): Number of reserved tokens for streaming. Defaults to 300. streaming_chunk_length (int, optional): Length of each streaming chunk. Defaults to 50. streaming_text_chunk_size (int, optional): Size of each text chunk. Defaults to 7. Returns: torch.Tensor: Causal mask for streaming TTS generation, shape is [batch_size=1, 1, seq_len=1, past_seen_tokens+1] Raises: AssertionError: If the batch size is not 1 (only supports batch size of 1 for inference). """ assert inputs_embeds.shape[0] == 1 dtype = inputs_embeds.dtype device = inputs_embeds.device min_dtype = torch.finfo(dtype).min # Add `1` to the past seen tokens to account for new `tokens` during `generate` causal_mask = torch.full((1, past_seen_tokens + 1), fill_value=0, dtype=dtype, device=device) # Calculate the start of invisible text tokens invisible_text_tokens_start = min( math.ceil( (past_seen_tokens - streaming_reserved_length) / streaming_audio_chunk_size ) * streaming_text_chunk_size, streaming_reserved_length ) + 1 + num_spk_emb * use_spk_emb # Add 1 for [Stts] and N for [spk_emb] tokens if `use_spk_emb` is True invisible_text_tokens_end = streaming_reserved_length + 1 + num_spk_emb * use_spk_emb + 1 # Add 1 for [Ptts] (aka `audio_bos_token_id`) # Set invisible text tokens to min_dtype (effectively -inf) causal_mask[0, invisible_text_tokens_start: invisible_text_tokens_end] = min_dtype # Mask padding positions in the text mask causal_mask[0, 0: 1 + num_spk_emb * use_spk_emb + streaming_reserved_length + 1].masked_fill_( streaming_tts_text_mask == 0, min_dtype) # Add extra dimensions for batch and heads causal_mask = causal_mask.unsqueeze(0).unsqueeze(0) return causal_mask class CustomRepetitionPenaltyLogitsProcessorRepeat: def __init__(self, penalty: float, max_input_ids: int, past_window: int): if not isinstance(penalty, float) or not (penalty > 0): raise ValueError( f"`penalty` has to be a strictly positive float, but is {penalty}" ) self.penalty = penalty self.max_input_ids = max_input_ids self.past_window = past_window def __call__( self, input_ids: torch.LongTensor, scores: torch.FloatTensor ) -> torch.FloatTensor: if input_ids.size(1) > self.past_window: input_ids = input_ids.narrow(1, -self.past_window, self.past_window) freq = F.one_hot(input_ids, scores.size(1)).sum(1) if freq.size(0) > self.max_input_ids: freq.narrow( 0, self.max_input_ids, freq.size(0) - self.max_input_ids ).zero_() alpha = torch.pow(self.penalty, freq) scores = scores.contiguous() inp = scores.multiply(alpha) oth = scores.divide(alpha) con = scores < 0 out = torch.where(con, inp, oth) del inp, oth, scores, con, alpha return out @dataclass class ConditionalChatTTSGenerationOutput(ModelOutput): """ Output class for ConditionalChatTTS generation. Args: new_ids (torch.LongTensor): Newly generated audio code sequence, shape (batch_size, sequence_length, num_vq). audio_input_ids (torch.LongTensor): Updated input IDs including condition and generated audio codes, shape (batch_size, full_sequence_length, num_vq). past_key_values (Tuple[Tuple[torch.FloatTensor]]): Tuple containing pre-computed keys and values used for attention mechanism. Each element has shape (batch_size, num_heads, sequence_length, embed_size_per_head). finished (bool): Boolean indicating whether generation is complete. """ new_ids: torch.LongTensor = None audio_input_ids: torch.LongTensor = None past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None finished: bool = None class MultiModalProjector(nn.Module): def __init__(self, in_dim, out_dim): super().__init__() self.linear1 = nn.Linear(in_features=in_dim, out_features=out_dim, bias=True) self.relu = nn.ReLU() self.linear2 = nn.Linear(in_features=out_dim, out_features=out_dim, bias=True) def forward(self, audio_features): hidden_states = self.relu(self.linear1(audio_features)) hidden_states = self.linear2(hidden_states) return hidden_states class ConditionalChatTTS(PreTrainedModel): config_class = ConditionalChatTTSConfig _no_split_modules = [] def __init__( self, config: ConditionalChatTTSConfig ): super().__init__(config) self.use_speaker_embedding = config.use_speaker_embedding self.use_llm_hidden_state = config.use_llm_hidden_state self.num_spk_embs = config.num_spk_embs self.spk_emb_token_id = config.spk_emb_token_id self.use_text = config.use_text self.streaming = config.streaming self.streaming_text_chunk_min = config.streaming_text_chunk_min self.streaming_text_chunk_max = config.streaming_text_chunk_max self.streaming_text_chunk_size = config.streaming_text_chunk_size self.streaming_audio_chunk_size = config.streaming_audio_chunk_size self.streaming_text_reserved_len = config.streaming_text_reserved_len self.audio_bos_token_id = config.audio_bos_token_id self.num_mel_bins = config.num_mel_bins self.num_vq = config.num_vq self.num_audio_tokens = config.num_audio_tokens self.top_p = config.top_p self.top_k = config.top_k self.repetition_penalty = config.repetition_penalty if self.config.use_mlp: self.projector = MultiModalProjector(config.llm_dim, config.hidden_size) else: self.projector = nn.Linear(config.llm_dim, config.hidden_size, bias=False) self.emb_code = nn.ModuleList( [ nn.Embedding(config.num_audio_tokens, config.hidden_size) for _ in range(config.num_vq) ] ) self.emb_text = nn.Embedding( config.num_text_tokens, config.hidden_size ) self.head_code = nn.ModuleList( [ weight_norm( nn.Linear(config.hidden_size, config.num_audio_tokens, bias=False), name="weight", ) for _ in range(config.num_vq) ] ) dvae = DVAE() self.dvae = dvae model_config = LlamaConfig( hidden_size=config.hidden_size, intermediate_size=config.intermediate_size, num_attention_heads=config.num_attention_heads, num_hidden_layers=config.num_hidden_layers, max_position_embeddings=config.max_position_embeddings, attn_implementation=config.attn_implementation, ) model = LlamaModel(model_config) self.model = model return def forward( self, input_ids, lm_spk_emb_last_hidden_states=None, lm_last_hidden_states=None, target_audio_features=None, streaming_tts_text_masks=None, **kwargs, ): """ Calculate TTS modeling loss. Only used in training. Process: - LLM last hidden states (obtained from LLM, with gradients) - Text ground truth (without gradients) - Target audio features (without gradients) Updates: - 2024/10/3: Support empty input (dummy train) for tasks without audio, preventing training stalls due to unused parameters. - 2024/10/11: Support EOS token Args: input_ids (List[Tensor[seq_len]]): Text ground truth input_ids for each model's speech area. Each element is a variable-length Tensor. lm_spk_emb_last_hidden_states (List[Tensor[gpt_dim]], optional): Speaker embedding last hidden states from the language model. lm_last_hidden_states (List[Tensor[seq_len, gpt_dim]], optional): LLM last hidden states for each model's speech area. Each element is a variable-length Tensor. target_audio_features (List[Tensor[num_channels, num_samples]], optional): Mel spectrogram ground truth for each model's speech area. Each element is a variable-length Tensor. streaming_tts_text_masks (List[Tensor[seq_len_max]], optional): Masks used to pad text to fixed length in streaming training. Shape is Tensor[seq_len_max]. """ # consider the case of dummy training dummy = False if self.train: if len(input_ids) == 0: dummy = True dummy_seq_len = 100 input_ids = [ torch.full( (dummy_seq_len,), fill_value=1, device=self.model.embed_tokens.weight.device, dtype=torch.int64 ) ] input_ids[0][0: self.num_spk_embs] = self.spk_emb_token_id if self.config.use_speaker_embedding: lm_spk_emb_last_hidden_states = [ torch.full( (self.num_spk_embs, self.config.llm_dim), fill_value=0, device=self.model.embed_tokens.weight.device, dtype=self.model.embed_tokens.weight.dtype ) ] else: lm_last_hidden_states = [ torch.full( (dummy_seq_len, self.config.llm_dim), fill_value=0, device=self.model.embed_tokens.weight.device, dtype=self.model.embed_tokens.weight.dtype ) ] target_audio_features = [ torch.full( (self.num_mel_bins, dummy_seq_len), fill_value=0, device=self.model.embed_tokens.weight.device, dtype=self.model.embed_tokens.weight.dtype ) ] streaming_tts_text_masks = None if lm_last_hidden_states is not None: assert not self.use_speaker_embedding # Project llm last hidden states (QwenAudio, Qwen2) to tts gpt decoder hidden size (as tts condition) first # Keep track of the length of each tts condition assert len(lm_last_hidden_states) != 0 all_tts_condition_seq_len = [i.shape[0] for i in lm_last_hidden_states] # Pad hidden states to be a big tensor for high efficiency ---- [batch_size, seq_len_max, lm_hidden_size] input_data = pad_sequence(lm_last_hidden_states, batch_first=True) # all_lm_last_hidden_states -> all_tts_conditions all_tts_condition = self.projector(input_data) # Perform L2 norm # [batch_size, seq_len_max, gpt_hidden_size] all_tts_condition = F.normalize(all_tts_condition, p=2, dim=2) # Split whole tensor into list[Tensor] and remove padding positions all_tts_condition_varlen = [] for idx in range(all_tts_condition.shape[0]): all_tts_condition_varlen.append(all_tts_condition[idx, 0:all_tts_condition_seq_len[idx]]) else: all_tts_condition_varlen = None if lm_spk_emb_last_hidden_states is not None: # List[Tensor[num_spk_emb, lm_hidden_dim]] assert self.use_speaker_embedding if len(lm_spk_emb_last_hidden_states) == 0: raise ValueError("lm_spk_emb_last_hidden_states is empty.") # [bs, num_spk_emb, lm_hidden_dim] This will raise an error if spk_emb is not equal for each data stacked_lm_spk_emb_last_hidden_states = torch.stack(lm_spk_emb_last_hidden_states, dim=0) # Check if the number of num_spk_embs matches the expectation assert stacked_lm_spk_emb_last_hidden_states.shape[1] == self.num_spk_embs # Project to tts decoder dimension uniformly gpt_spk_emb_last_hidden_states = self.projector( stacked_lm_spk_emb_last_hidden_states) # [bs, num_spk_emb, gpt_dim] # Normalize gpt_spk_emb_last_hidden_states = F.normalize(gpt_spk_emb_last_hidden_states, p=2, dim=-1) else: gpt_spk_emb_last_hidden_states = None # means training, encoding audio features to audio tokens using dVAE on the fly if target_audio_features is not None: assert self.dvae.coef.requires_grad == False with torch.inference_mode(): eos_token_id = int(self.emb_code[0].num_embeddings - 1) all_audio_codes = [] # For speech, it might be necessary to keep float32 encoding, even if it's slower with torch.cuda.amp.autocast(dtype=torch.float): for audio_waveform in target_audio_features: audio_codes = self.dvae(audio_waveform, mode="encode") # Tensor[1, num_vq, audio_seq_len] # Add eos token audio_codes_with_eos = torch.cat( ( audio_codes.squeeze(0), # [num_vq, seq_len] torch.ones(self.num_vq, 1, device=audio_codes.device, dtype=audio_codes.dtype) * eos_token_id # [num_vq, 1] ), dim=-1 ) all_audio_codes.append(audio_codes_with_eos) # Tensor[4, audio_seq_len] all_audio_codes_seq_len = [i.shape[1] for i in all_audio_codes] # Encode 4 layers of codes to audio embedding by layer audio_embed_all_layers = [] for i in range(self.num_vq): audio_codes_layer_i = [] for codes in all_audio_codes: audio_codes_layer_i.append( codes[i, :].squeeze(0), ) # Pad each layer of audio codes to fixed length audio_codes_layer_i = pad_sequence(audio_codes_layer_i, batch_first=True) # Encode each layer of audio codes into embedding (parallelized) audio_embed_layer_i = self.emb_code[i](audio_codes_layer_i) # [batch_size, seq_len, gpt_hidden_dim] audio_embed_all_layers.append(audio_embed_layer_i) # Here we need to calculate the audio_embed of four layers and add them up # According to the official implementation of ChatTTS https://github.com/2noise/ChatTTS/blob/51ec0c784c2795b257d7a6b64274e7a36186b731/ChatTTS/model/gpt.py#L451 audio_embed_all_layers = torch.stack(audio_embed_all_layers, dim=0) # [num_vq, seq_len, gpt_hidden_dim] audio_embed_all_layers = torch.sum(audio_embed_all_layers, dim=0, keepdim=False) # [seq_len, gpt_hidden_dim] # Convert back to variable-length sequences based on the original lengths of stored audio codes audio_embed_all_layers_varlen = [] for idx in range(audio_embed_all_layers.shape[0]): audio_embed_all_layers_varlen.append( audio_embed_all_layers[idx, 0:all_audio_codes_seq_len[idx]] ) # Encode the text into embeds all_input_ids_seq_len = [i.shape[0] for i in input_ids] input_ids = pad_sequence(input_ids, batch_first=True) all_text_embeds = self.emb_text(input_ids) # [batch_size, seq_len] -> [batch_size, seq_len, gpt_hidden_dim] # Merge spk_emb: If spk_emb is provided, it needs to be replaced in the embeds if lm_spk_emb_last_hidden_states is not None: # This is an in-place replacement of some positions in all_text_embeds with spk emb apply_spk_emb( input_ids=input_ids, spk_emb=gpt_spk_emb_last_hidden_states, input_embeds=all_text_embeds, spk_emb_token_id=self.spk_emb_token_id, num_spk_embs=self.num_spk_embs, ) all_text_embeds_varlen = [] # Convert back to variable-length sequences for easier fusion of different tokens later for idx in range(all_text_embeds.shape[0]): all_text_embeds_varlen.append( all_text_embeds[idx, 0:all_input_ids_seq_len[idx], :] ) # List[ Tensor[seq_len, gpt_hidden_dim] ] # Merge tts condition, audio embeds, and text token embeds. # Final concatenation format: llm last hidden state | text_embeds embeds | audio embeds # Merge embeds from multiple sources embeds_to_merge = [] # Add lm condition if lm_last_hidden_states is not None: embeds_to_merge.append(all_tts_condition_varlen) # Add text if self.use_text: embeds_to_merge.append(all_text_embeds_varlen) # If audio feature is provided, add audio embeds if target_audio_features is not None: embeds_to_merge.append(audio_embed_all_layers_varlen) # Merge embeds all_merged_embeds_ = [] for item_tuple in zip(*embeds_to_merge): # [seq_len_tts_condition+seq_len_text+seq_len_audio, gpt_hidden_dim] merged_embed = torch.cat(item_tuple, dim=0) all_merged_embeds_.append(merged_embed) input_embeds_seqlen = [] for i in all_merged_embeds_: input_embeds_seqlen.append(i.shape[0]) # This will pad the embeds of each sequence to form a neat tensor, as we're about to feed it into the transformer # We don't generate an attention mask here because we use right padding input_embeds = pad_sequence(all_merged_embeds_, batch_first=True) # List[ Tensor[seq_len_i, gpt_hidden_dim] ] -> Tensor[batch_size, seq_len_max, gpt_hidden_dim] # Determine the position of text in each data text_ranges = [] batch_size = input_embeds.shape[0] for idx in range(batch_size): start_idx = 0 # If hidden state is provided, we need to consider the length of the hidden state if lm_last_hidden_states is not None: start_idx += all_tts_condition_seq_len[idx] end_idx = start_idx + all_input_ids_seq_len[idx] text_ranges.append((start_idx, end_idx)) if target_audio_features is not None: # Make labels for audio codes batch_size = input_embeds.shape[0] seq_len_max = input_embeds.shape[1] # Here we construct a labels, only the positions of audio codes will be learned. [batch_size, seq_len, num_vqs] labels = torch.zeros(batch_size, seq_len_max, self.num_vq, device=input_embeds.device, dtype=torch.long) labels[:, :, :] = -100 # Determine the position of audio codes in each data audio_codes_ranges = [] for idx in range(batch_size): start_idx = 0 # If hidden state is provided, we need to consider the length of the hidden state if lm_last_hidden_states is not None: start_idx += all_tts_condition_seq_len[idx] if self.use_text: start_idx += all_input_ids_seq_len[idx] end_idx = start_idx + all_audio_codes_seq_len[idx] audio_codes_ranges.append((start_idx, end_idx)) # Replace audio labels into labels for idx, audio_codes_range in zip(range(batch_size), audio_codes_ranges): start_idx = audio_codes_range[0] end_idx = audio_codes_range[1] labels[ idx, start_idx: end_idx, : ] = all_audio_codes[idx].permute(1, 0) # For REAL streaming ChatTTS setting, a simple way is to create a self-defined 4D attention mask to the model, then we can control which kv can be attended by which q. # https://github.com/huggingface/transformers/blob/65bb28444849976f853063edb958b3ef3dd59d12/src/transformers/models/llama/modeling_llama.py#L59 # It says, `Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.` if self.streaming and not dummy: tts_attention_mask_4d = make_streaming_chunk_mask( input_embeds=input_embeds, # input_embeds after merging text and audio tts_text_scopes=text_ranges, # List[Tuple[int, int]] tts_audio_scopes=audio_codes_ranges, # List[Tuple[int, int]] tts_text_masks=streaming_tts_text_masks, # List[Tensor[seq_len_max]] min_chunk_num_token=self.streaming_text_chunk_min, max_chunk_num_token=self.streaming_text_chunk_max, streaming_audio_chunk_size=self.streaming_audio_chunk_size, ) # [batch_size, 1, seq_len, seq_len] else: tts_attention_mask_4d = None # invoke gpt forward AND get last hidden states AND predict audio codes # here we don't use attention mask because we use right padding, and we have manually made labels know where should learn outputs = self.model( # self.decoder.gpt is a Llama model, not LlamaForCausalLM inputs_embeds=input_embeds, attention_mask=tts_attention_mask_4d, ) tts_last_hidden_state = outputs.last_hidden_state # [batch, seq_len_max, gpt_hidden_dim] # predict audio codes using last_hidden_state by gpt TTS decoder logits_all_vq_layers = [] for num_vq_iter in range(self.num_vq): logits_i = self.head_code[num_vq_iter]( tts_last_hidden_state) # [batch, seq_len_max, audio_codebook_vocab] logits_all_vq_layers.append(logits_i) logits_all_vq_layers = torch.stack(logits_all_vq_layers, dim=0) # [num_vq, batch_size, seq_len_max, audio_codebook_vocab], stack, insert one extra dimension logits_all_vq_layers = logits_all_vq_layers.permute(1, 2, 0, 3) # [batch_size, seq_len_max, num_vq, audio_codebook_vocab] # compute model predictions shift_logits = logits_all_vq_layers[:, :-1, :, :].contiguous() # [batch_size, seq_len_max-1, num_vq, audio_codebook_vocab] shift_labels = labels[:, 1:, :].contiguous() # [batch_size, seq_len_max-1, num_vq] # compute CE loss if not self.aug_loss_weight: loss_fct = nn.CrossEntropyLoss() loss = loss_fct( shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1).to(shift_logits.device) ) else: loss_fct = nn.CrossEntropyLoss(reduction='none') losses = loss_fct( shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1).to(shift_logits.device) ).view(shift_labels.size()) # [batch_size, seq_len_max-1, num_vq] valid_label_count = (shift_labels != -100).sum() eos_token_id = int(self.dvae.emb_code[0].num_embeddings - 1) eos_positions = (shift_labels == eos_token_id).nonzero() for pos in eos_positions: seq_len = pos[1] + 1 # 包含eos_token_id的序列长度 if seq_len < 400: # shorter than 5s (150text+50audio*5) losses[pos[0], pos[1], pos[2]] *= 0.2 elif seq_len > 650: # longer than 15s (150text+50audio*15) losses[pos[0], pos[1], pos[2]] *= 2 loss = losses.sum() / valid_label_count if dummy: print("dummy loss", loss) loss = loss * 0 # Avoid bringing invalid gradients else: loss = None return loss @torch.inference_mode() def prepare_inputs_embeds( self, input_ids: torch.Tensor, lm_spk_emb_last_hidden_states: Optional[torch.Tensor] = None, lm_last_hidden_states: Optional[torch.Tensor] = None ): """Prepare inputs_embeds for the model in inference mode, encode input_ids to embeddings, then merge lm_spk_emb_last_hidden_states, and lm_last_hidden_states. Args: input_ids (torch.Tensor): Input token IDs. lm_spk_emb_last_hidden_states (Optional[torch.Tensor], optional): Last hidden states of speaker embeddings from the language model. Defaults to None. lm_last_hidden_states (Optional[torch.Tensor], optional): Last hidden states from the language model. Defaults to None. Raises: NotImplementedError: If speaker embedding is not used and language model hidden states are not implemented. Returns: torch.Tensor: Prepared input embeddings for the model. """ assert input_ids.shape[0] == 1 # Embed input_ids to input_embeds inputs_embeds = self.emb_text(input_ids) # Inject speaker embedding to input_embeds if it exists if self.use_speaker_embedding: spk_emb_mask = input_ids == self.spk_emb_token_id if spk_emb_mask.any(): assert lm_spk_emb_last_hidden_states is not None # Project spk emb to tts hidden size first, [batch_size, num_spk_emb, llm_dim] -> [batch_size, num_spk_emb, self.hidden_size] lm_spk_emb_last_hidden_states = lm_spk_emb_last_hidden_states.to(self.projector.linear1.weight.dtype) projected_spk_emb = self.projector(lm_spk_emb_last_hidden_states) projected_spk_emb = F.normalize(projected_spk_emb, p=2, dim=-1) apply_spk_emb( input_ids=input_ids, spk_emb=projected_spk_emb, input_embeds=inputs_embeds, spk_emb_token_id=self.spk_emb_token_id, num_spk_embs=self.num_spk_embs ) else: assert lm_last_hidden_states is not None # TODO: Add projected language model hidden states to tts embedding space raise NotImplementedError return inputs_embeds @torch.inference_mode() def prefill_text( self, input_ids: torch.Tensor, position_ids: torch.LongTensor, past_key_values: List[Tuple[torch.Tensor, torch.Tensor]], lm_spk_emb_last_hidden_states: Optional[torch.Tensor] = None, lm_last_hidden_states: Optional[torch.Tensor] = None ): """Prefill a chunk of new text tokens in streaming setting. Specifically speaking, update `past_key_values` using new text tokens. Args: input_ids (Tensor): Tensor of shape [batch_size, seq_len] position_ids (LongTensor): Tensor of shape [batch_size, seq_len] past_key_values (List[Tuple[Tensor]]): KV Cache of all layers, each layer is a tuple (Tensor, Tensor) denoting keys and values. Each tensor is of seq_len = `self.streaming_text_reserved_len`. `past_key_values` will be updated. lm_spk_emb_last_hidden_states (Tensor, optional): Tensor of shape [batch_size, num_spk_emb, llm_dim]. Defaults to None. lm_last_hidden_states (Tensor, optional): _description_. Defaults to None. Note that all `batch_size` should be `1`. """ assert input_ids.shape[0] == 1 assert past_key_values is not None # Merge text and embeddings from language model inputs_embeds = self.prepare_inputs_embeds( input_ids=input_ids, lm_spk_emb_last_hidden_states=lm_spk_emb_last_hidden_states, lm_last_hidden_states=lm_last_hidden_states, ) # Clone KV Cache past_key_values_for_prefill = [] for i in range(len(past_key_values)): past_key_values_for_prefill.append( ( past_key_values[i][0][:, :, :position_ids[:, 0], :].clone(), past_key_values[i][1][:, :, :position_ids[:, 0], :].clone(), ) ) # Model forward outputs_prefill: BaseModelOutputWithPast = self.model( attention_mask=None, # because for text, it is standard causal attention mask, do nothing position_ids=position_ids, # position_ids denotes the position of new text tokens in the sequence past_key_values=past_key_values_for_prefill, # `past_key_values` will be updated by the model inputs_embeds=inputs_embeds, # contains text and language model embedding use_cache=True, output_attentions=False, cache_position=position_ids, # which new positions will use this cache, basically the same as position_ids ) # Get model updated KV Cache past_key_values_for_prefill_updated = outputs_prefill.past_key_values # Update generated KV Cache to input past_key_values for layer_idx in range(len(past_key_values)): # Update keys past_key_values[layer_idx][0][:, :, position_ids[:, 0]:position_ids[:, -1] + 1, :] = \ past_key_values_for_prefill_updated[layer_idx][0][:, :, position_ids[:, 0]:position_ids[:, -1] + 1].clone() # Update values past_key_values[layer_idx][1][:, :, position_ids[:, 0]:position_ids[:, -1] + 1, :] = \ past_key_values_for_prefill_updated[layer_idx][1][:, :, position_ids[:, 0]:position_ids[:, -1] + 1].clone() # TODO: del past_key_values_for_prefill_updated recursively # TODO: del outputs_prefill recursively return past_key_values @torch.inference_mode() def generate( self, input_ids: torch.Tensor, past_key_values: List[Tuple[torch.Tensor, torch.Tensor]], temperature: torch.Tensor, eos_token: Union[int, torch.Tensor], streaming_tts_text_mask=None, force_no_stop=False, min_new_token=10, max_new_token=50, logits_warpers: List[LogitsWarper] = [], logits_processors: List[CustomRepetitionPenaltyLogitsProcessorRepeat] = [], show_tqdm=False, ): """Generate audio codes in streaming setting. Specifically speaking, generate audio codes when not all text tokens are prefilled. Usage: Always pass an non-empty `past_key_values` to the function. The function does not do `prefill` by itself. It relies on `prefill_text` method to provide a valid `past_key_values`. 1. Create an empty `past_key_values` with ```python initial_kv_cache_length = 1 + self.num_spk_embs + self.streaming_text_reserved_len dtype = model.emb_text.weight.dtype device = model.emb_text.weight.device past_key_values = [ ( torch.zeros(1, model.config.num_attention_heads, initial_kv_cache_length, model.config.hidden_size // model.config.num_attention_heads, dtype=dtype, device=device), torch.zeros(1, model.config.num_attention_heads, initial_kv_cache_length, model.config.hidden_size // model.config.num_attention_heads, dtype=dtype, device=device) ) for _ in range(model.config.num_hidden_layers) ] 2. Prefill some text tokens using `prefill_text` method. ```python outputs = llm.generate(**kwargs) lm_spk_emb_last_hidden_states or lm_last_hidden_states = extract(outputs.last_hidden_states) input_ids = tts_tokenizer.encode(llm_tokenizer.decode(llm_tokens)) position_ids = torch.arange(begin, end, dtype=torch.long, device=device) past_key_values = self.prefill_text( input_ids=input_ids, position_ids=position_ids, past_key_values=past_key_values, lm_spk_emb_last_hidden_states=lm_spk_emb_last_hidden_states, lm_last_hidden_states=lm_last_hidden_states, ) ``` 3. Generate audio codes using `generate` method. ```python # initialize input_ids, this should be only done `once` condition_length = 1 + model.num_spk_embs * model.use_speaker_embedding + model.streaming_text_reserved_len + 1 input_ids = torch.zeros(batch_size=1, condition_length, self.num_vq) outputs = self.generate( input_ids=input_ids, past_key_values=past_key_values, ) # update past_key_values and input_ids past_key_values = outputs.past_key_values input_ids = outputs.input_ids ``` 4. Repeat step 2 and 3. Args: input_ids (torch.Tensor): Input token ids. past_key_values (List[Tuple[torch.Tensor, torch.Tensor]]): Past key values for attention mechanism. temperature (torch.Tensor): Temperature for sampling. eos_token (Union[int, torch.Tensor]): End of sequence token. streaming_tts_text_mask (Optional[torch.Tensor], optional): Mask for streaming TTS text. Defaults to None. max_new_token (int, optional): Maximum number of new tokens to generate. Defaults to 50. logits_warpers (List[LogitsWarper], optional): List of logits warpers. Defaults to []. logits_processors (List[CustomRepetitionPenaltyLogitsProcessorRepeat], optional): List of logits processors. Defaults to []. show_tqdm (bool, optional): Whether to show progress bar. Defaults to True. Raises: NotImplementedError: _description_ Returns: GenerationOutputs: Generation outputs. """ # We only support batch size `1` for now assert input_ids.shape[0] == 1 assert past_key_values is not None # fix: this should not be `input_ids.shape[1]` # start_idx = input_ids.shape[1] start_idx = 1 + self.num_spk_embs * self.use_speaker_embedding + self.streaming_text_reserved_len + 1 finish = torch.zeros(input_ids.shape[0], device=input_ids.device).bool() temperature = ( temperature.unsqueeze(0) .expand(input_ids.shape[0], -1) .contiguous() .view(-1, 1) ) progress = input_ids.shape[1] # Pre-allocate input_ids, shape is [batch_size=1, max_possible_seq_len, self.num_vqs] input_ids_buf = torch.zeros( input_ids.shape[0], # batch_size progress + max_new_token, # max_possible_seq_len = input_ids.shape[1] + max_new_token input_ids.shape[2], # self.num_vqs dtype=input_ids.dtype, device=input_ids.device, ) # Copy existing input_ids to input_ids_buf input_ids_buf.narrow(1, 0, progress).copy_(input_ids) del input_ids input_ids = input_ids_buf.narrow(1, 0, progress) pbar: Optional[tqdm] = None if show_tqdm: pbar = tqdm( total=max_new_token, desc="code", bar_format="{l_bar}{bar}| {n_fmt}/{total_fmt}(max) [{elapsed}, {rate_fmt}{postfix}]", ) condition_length = 1 + self.num_spk_embs * self.use_speaker_embedding + self.streaming_text_reserved_len + 1 for i in range(max_new_token): # Prepare generation inputs audio_bos = False # If this is the first audio token, the case is special if progress == condition_length: audio_bos = True if audio_bos: # Generate the first token, activate the model with `self.audio_bos_token_id`, the model will predict a new audio token. assert progress == (past_key_values[0][0].shape[2] + 1) narrowed_input_ids = torch.tensor([[self.audio_bos_token_id]], dtype=torch.long, device=self.device) inputs_embeds = self.emb_text(narrowed_input_ids) del narrowed_input_ids else: # Generate the following audio tokens, it is applicable to all other cases, including second and the following calling of `generate` assert progress == (past_key_values[0][0].shape[2] + 1) narrowed_input_ids = input_ids.narrow(dim=1, start=input_ids.shape[1] - 1, length=1) code_emb = [ self.emb_code[i](narrowed_input_ids[:, :, i]) for i in range(self.num_vq) ] inputs_embeds = torch.stack(code_emb, 3).sum(3) position_ids = torch.tensor( [past_key_values[0][0].shape[2] + 1], dtype=torch.long, device=self.device ).unsqueeze(0) cache_position = position_ids.clone() causal_mask = make_streaming_chunk_mask_generation( inputs_embeds=inputs_embeds, past_seen_tokens=past_key_values[0][0].shape[2], streaming_tts_text_mask=streaming_tts_text_mask, streaming_reserved_length=self.streaming_text_reserved_len, streaming_text_chunk_size=self.streaming_text_chunk_size ) # debug = False # if debug: # print(f"generation step {i}") # print(f" position_ids {position_ids}") # if past_key_values is not None: # print(f" past_key_values {past_key_values[0][0].shape}") # print(f" inputs_embeds {inputs_embeds.shape}") # print(f" cache_position {cache_position}") # print(f" causal_mask {causal_mask.shape}") # Model forward outputs: BaseModelOutputWithPast = self.model( attention_mask=causal_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=True, output_attentions=False, cache_position=cache_position, ) del position_ids del inputs_embeds del cache_position del causal_mask hidden_states = outputs.last_hidden_state past_key_values = outputs.past_key_values with P.cached(): logits = torch.empty( hidden_states.size(0), hidden_states.size(1), self.num_audio_tokens, self.num_vq, dtype=torch.float, device=self.device, ) for num_vq_iter in range(self.num_vq): x: torch.Tensor = self.head_code[num_vq_iter](hidden_states) logits[..., num_vq_iter] = x del x del hidden_states # logits = logits[:, -1].float() logits = logits.narrow(1, -1, 1).squeeze_(1).float() # logits = rearrange(logits, "b c n -> (b n) c") logits = logits.permute(0, 2, 1) logits = logits.reshape(-1, logits.size(2)) # logits_token = rearrange(input_ids[:, start_idx:], "b c n -> (b n) c") input_ids_sliced = input_ids.narrow( 1, start_idx, input_ids.size(1) - start_idx, ).permute(0, 2, 1) logits_token = input_ids_sliced.reshape( input_ids_sliced.size(0) * input_ids_sliced.size(1), -1, ).to(self.device) del input_ids_sliced logits /= temperature if not audio_bos: for logitsProcessors in logits_processors: logits = logitsProcessors(logits_token, logits) if not audio_bos: for logitsWarpers in logits_warpers: logits = logitsWarpers(logits_token, logits) del logits_token if i < min_new_token: logits[:, eos_token] = -torch.inf if force_no_stop: logits[:, eos_token] = -torch.inf scores = F.softmax(logits, dim=-1) del logits idx_next = torch.multinomial(scores, num_samples=1).to(finish.device) del scores # idx_next = rearrange(idx_next, "(b n) 1 -> b n", n=self.num_vq) idx_next = idx_next.view(-1, self.num_vq) finish_or = idx_next.eq(eos_token).any(1) finish.logical_or_(finish_or) del finish_or # 新的 `token` 存入 `input_ids_buf` input_ids_buf.narrow(1, progress, 1).copy_(idx_next.unsqueeze_(1)) if i == 0 and finish.any(): # raise Exception break del idx_next progress += 1 input_ids = input_ids_buf.narrow(1, 0, progress) if finish.all(): break if pbar is not None: pbar.update(1) if pbar is not None: pbar.close() if not finish.all(): if show_tqdm: print( f"incomplete result. hit max_new_token: {max_new_token}" ) del input_ids_buf if finish.all(): # the last may contains eos token genrated_input_ids = input_ids[:, condition_length:-1, :] else: # there is no eos token genrated_input_ids = input_ids[:, condition_length:, :] return ConditionalChatTTSGenerationOutput( new_ids=genrated_input_ids, audio_input_ids=input_ids, # for update purpose past_key_values=past_key_values, # for update purpose finished=finish.all(), ) @torch.inference_mode() def decode_to_mel_specs( self, result_list: List[torch.Tensor], use_decoder: bool = False, ): decoder = self.dvae max_x_len = -1 if len(result_list) == 0: return np.array([], dtype=np.float32) for result in result_list: if result.size(0) > max_x_len: max_x_len = result.size(0) batch_result = torch.zeros( (len(result_list), result_list[0].size(1), max_x_len), dtype=result_list[0].dtype, device=result_list[0].device, ) for i in range(len(result_list)): src = result_list[i] batch_result[i].narrow(1, 0, src.size(0)).copy_(src.permute(1, 0)) del src mel_specs = decoder(batch_result) del batch_result return mel_specs def gen_logits( num_code: int, top_P=0.7, top_K=20, repetition_penalty=1.0, ): logits_warpers = [] if top_P is not None: logits_warpers.append(TopPLogitsWarper(top_P, min_tokens_to_keep=3)) if top_K is not None: logits_warpers.append(TopKLogitsWarper(top_K, min_tokens_to_keep=3)) logits_processors = [] if repetition_penalty is not None and repetition_penalty != 1: logits_processors.append( CustomRepetitionPenaltyLogitsProcessorRepeat( repetition_penalty, num_code, 16 ) ) return logits_warpers, logits_processors