Update README.md w/ correct info
Browse filesREADME.md previously had info for SDXL-Turbo instead of SD-Turbo
README.md
CHANGED
@@ -2,8 +2,8 @@
|
|
2 |
pipeline_tag: text-to-image
|
3 |
license: other
|
4 |
license_name: sai-nc-community
|
5 |
-
license_link: https://huggingface.co/stabilityai/
|
6 |
-
base_model: stabilityai/
|
7 |
language:
|
8 |
- en
|
9 |
tags:
|
@@ -14,15 +14,15 @@ tags:
|
|
14 |
- text-to-image
|
15 |
---
|
16 |
|
17 |
-
# Stable Diffusion
|
18 |
|
19 |
## Introduction
|
20 |
|
21 |
-
This repository hosts the optimized
|
22 |
|
23 |
The models are generated by [Olive](https://github.com/microsoft/Olive/tree/main/examples/stable_diffusion) with command like the following:
|
24 |
```
|
25 |
-
python
|
26 |
```
|
27 |
|
28 |
See the [usage instructions](#usage-example) for how to run the SDXL pipeline with the ONNX files hosted in this repository.
|
@@ -32,9 +32,24 @@ See the [usage instructions](#usage-example) for how to run the SDXL pipeline wi
|
|
32 |
- **Developed by:** Stability AI
|
33 |
- **Model type:** Diffusion-based text-to-image generative model
|
34 |
- **License:** [STABILITY AI NON-COMMERCIAL RESEARCH COMMUNITY LICENSE](https://huggingface.co/stabilityai/sd-turbo/blob/main/LICENSE)
|
35 |
-
- **Model Description:** This is a conversion of the [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
-
The VAE decoder is converted from [sdxl-vae-fp16-fix](https://huggingface.co/madebyollin/sdxl-vae-fp16-fix). There are slight discrepancies between its output and that of the original VAE, but the decoded images should be [close enough for most purposes](https://huggingface.co/madebyollin/sdxl-vae-fp16-fix/discussions/7#64c5c0f8e2e5c94bd04eaa80).
|
38 |
|
39 |
## Usage Example
|
40 |
|
@@ -48,10 +63,10 @@ git clone https://github.com/microsoft/onnxruntime
|
|
48 |
cd onnxruntime
|
49 |
```
|
50 |
|
51 |
-
2. Download the
|
52 |
```shell
|
53 |
git lfs install
|
54 |
-
git clone https://huggingface.co/tlwu/
|
55 |
```
|
56 |
|
57 |
3. Launch the docker
|
@@ -84,8 +99,8 @@ python3 -m pip install --upgrade polygraphy onnx-graphsurgeon --extra-index-url
|
|
84 |
|
85 |
6. Perform ONNX Runtime optimized inference
|
86 |
```shell
|
87 |
-
python3
|
88 |
"starry night over Golden Gate Bridge by van gogh" \
|
89 |
-
--version
|
90 |
-
--engine-dir /workspace/
|
91 |
```
|
|
|
2 |
pipeline_tag: text-to-image
|
3 |
license: other
|
4 |
license_name: sai-nc-community
|
5 |
+
license_link: https://huggingface.co/stabilityai/sd-turbo/blob/main/LICENSE.TXT
|
6 |
+
base_model: stabilityai/sd-turbo
|
7 |
language:
|
8 |
- en
|
9 |
tags:
|
|
|
14 |
- text-to-image
|
15 |
---
|
16 |
|
17 |
+
# Stable Diffusion Turbo for ONNX Runtime CUDA
|
18 |
|
19 |
## Introduction
|
20 |
|
21 |
+
This repository hosts the optimized ONNX models of **SD Turbo** to accelerate inference with ONNX Runtime CUDA execution provider for Nvidia GPUs. It cannot run in other providers like CPU and DirectML.
|
22 |
|
23 |
The models are generated by [Olive](https://github.com/microsoft/Olive/tree/main/examples/stable_diffusion) with command like the following:
|
24 |
```
|
25 |
+
python stable_diffusion.py --provider cuda --model_id stabilityai/sd-turbo --optimize --use_fp16_fixed_vae
|
26 |
```
|
27 |
|
28 |
See the [usage instructions](#usage-example) for how to run the SDXL pipeline with the ONNX files hosted in this repository.
|
|
|
32 |
- **Developed by:** Stability AI
|
33 |
- **Model type:** Diffusion-based text-to-image generative model
|
34 |
- **License:** [STABILITY AI NON-COMMERCIAL RESEARCH COMMUNITY LICENSE](https://huggingface.co/stabilityai/sd-turbo/blob/main/LICENSE)
|
35 |
+
- **Model Description:** This is a conversion of the [SD-Turbo](https://huggingface.co/stabilityai/sd-turbo) model for [ONNX Runtime](https://github.com/microsoft/onnxruntime) inference with CUDA execution provider.
|
36 |
+
|
37 |
+
## Performance
|
38 |
+
|
39 |
+
#### Latency
|
40 |
+
|
41 |
+
Below is average latency of generating an image of size 512x512 using NVIDIA A100-SXM4-80GB GPU:
|
42 |
+
|
43 |
+
| Engine | Batch Size | Steps | ONNX Runtime CUDA |
|
44 |
+
|-------------|------------|------ | ----------------- |
|
45 |
+
| Static | 1 | 1 | 38.2 ms |
|
46 |
+
| Static | 4 | 1 | 120.2 ms |
|
47 |
+
| Static | 1 | 4 | 68.7 ms |
|
48 |
+
| Static | 4 | 4 | 192.6 ms |
|
49 |
+
|
50 |
+
|
51 |
+
Static means the engine is built for the given batch size and image size combination, and CUDA graph is used to speed up.
|
52 |
|
|
|
53 |
|
54 |
## Usage Example
|
55 |
|
|
|
63 |
cd onnxruntime
|
64 |
```
|
65 |
|
66 |
+
2. Download the ONNX files from this repo
|
67 |
```shell
|
68 |
git lfs install
|
69 |
+
git clone https://huggingface.co/tlwu/sd-turbo-onnxruntime
|
70 |
```
|
71 |
|
72 |
3. Launch the docker
|
|
|
99 |
|
100 |
6. Perform ONNX Runtime optimized inference
|
101 |
```shell
|
102 |
+
python3 demo_txt2img.py \
|
103 |
"starry night over Golden Gate Bridge by van gogh" \
|
104 |
+
--version sd-turbo \
|
105 |
+
--engine-dir /workspace/sd-turbo-onnxruntime
|
106 |
```
|