sschoenmeyer commited on
Commit
80d4d2e
·
verified ·
1 Parent(s): 6d0b4c1

Update README.md w/ correct info

Browse files

README.md previously had info for SDXL-Turbo instead of SD-Turbo

Files changed (1) hide show
  1. README.md +27 -12
README.md CHANGED
@@ -2,8 +2,8 @@
2
  pipeline_tag: text-to-image
3
  license: other
4
  license_name: sai-nc-community
5
- license_link: https://huggingface.co/stabilityai/sdxl-turbo/blob/main/LICENSE.TXT
6
- base_model: stabilityai/sdxl-turbo
7
  language:
8
  - en
9
  tags:
@@ -14,15 +14,15 @@ tags:
14
  - text-to-image
15
  ---
16
 
17
- # Stable Diffusion XL Turbo for ONNX Runtime CUDA
18
 
19
  ## Introduction
20
 
21
- This repository hosts the optimized onnx models of **SDXL Turbo** to accelerate inference with ONNX Runtime CUDA execution provider for Nvidia GPUs. It cannot run in other providers like CPU or DirectML.
22
 
23
  The models are generated by [Olive](https://github.com/microsoft/Olive/tree/main/examples/stable_diffusion) with command like the following:
24
  ```
25
- python stable_diffusion_xl.py --provider cuda --model_id stabilityai/sdxl-turbo --optimize --use_fp16_fixed_vae
26
  ```
27
 
28
  See the [usage instructions](#usage-example) for how to run the SDXL pipeline with the ONNX files hosted in this repository.
@@ -32,9 +32,24 @@ See the [usage instructions](#usage-example) for how to run the SDXL pipeline wi
32
  - **Developed by:** Stability AI
33
  - **Model type:** Diffusion-based text-to-image generative model
34
  - **License:** [STABILITY AI NON-COMMERCIAL RESEARCH COMMUNITY LICENSE](https://huggingface.co/stabilityai/sd-turbo/blob/main/LICENSE)
35
- - **Model Description:** This is a conversion of the [SDXL-Turbo](https://huggingface.co/stabilityai/sdxl-turbo) model for [ONNX Runtime](https://github.com/microsoft/onnxruntime) inference with CUDA execution provider.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
 
37
- The VAE decoder is converted from [sdxl-vae-fp16-fix](https://huggingface.co/madebyollin/sdxl-vae-fp16-fix). There are slight discrepancies between its output and that of the original VAE, but the decoded images should be [close enough for most purposes](https://huggingface.co/madebyollin/sdxl-vae-fp16-fix/discussions/7#64c5c0f8e2e5c94bd04eaa80).
38
 
39
  ## Usage Example
40
 
@@ -48,10 +63,10 @@ git clone https://github.com/microsoft/onnxruntime
48
  cd onnxruntime
49
  ```
50
 
51
- 2. Download the SDXL ONNX files from this repo
52
  ```shell
53
  git lfs install
54
- git clone https://huggingface.co/tlwu/sdxl-turbo-onnxruntime
55
  ```
56
 
57
  3. Launch the docker
@@ -84,8 +99,8 @@ python3 -m pip install --upgrade polygraphy onnx-graphsurgeon --extra-index-url
84
 
85
  6. Perform ONNX Runtime optimized inference
86
  ```shell
87
- python3 demo_txt2img_xl.py \
88
  "starry night over Golden Gate Bridge by van gogh" \
89
- --version xl-turbo \
90
- --engine-dir /workspace/sdxl-turbo-onnxruntime
91
  ```
 
2
  pipeline_tag: text-to-image
3
  license: other
4
  license_name: sai-nc-community
5
+ license_link: https://huggingface.co/stabilityai/sd-turbo/blob/main/LICENSE.TXT
6
+ base_model: stabilityai/sd-turbo
7
  language:
8
  - en
9
  tags:
 
14
  - text-to-image
15
  ---
16
 
17
+ # Stable Diffusion Turbo for ONNX Runtime CUDA
18
 
19
  ## Introduction
20
 
21
+ This repository hosts the optimized ONNX models of **SD Turbo** to accelerate inference with ONNX Runtime CUDA execution provider for Nvidia GPUs. It cannot run in other providers like CPU and DirectML.
22
 
23
  The models are generated by [Olive](https://github.com/microsoft/Olive/tree/main/examples/stable_diffusion) with command like the following:
24
  ```
25
+ python stable_diffusion.py --provider cuda --model_id stabilityai/sd-turbo --optimize --use_fp16_fixed_vae
26
  ```
27
 
28
  See the [usage instructions](#usage-example) for how to run the SDXL pipeline with the ONNX files hosted in this repository.
 
32
  - **Developed by:** Stability AI
33
  - **Model type:** Diffusion-based text-to-image generative model
34
  - **License:** [STABILITY AI NON-COMMERCIAL RESEARCH COMMUNITY LICENSE](https://huggingface.co/stabilityai/sd-turbo/blob/main/LICENSE)
35
+ - **Model Description:** This is a conversion of the [SD-Turbo](https://huggingface.co/stabilityai/sd-turbo) model for [ONNX Runtime](https://github.com/microsoft/onnxruntime) inference with CUDA execution provider.
36
+
37
+ ## Performance
38
+
39
+ #### Latency
40
+
41
+ Below is average latency of generating an image of size 512x512 using NVIDIA A100-SXM4-80GB GPU:
42
+
43
+ | Engine | Batch Size | Steps | ONNX Runtime CUDA |
44
+ |-------------|------------|------ | ----------------- |
45
+ | Static | 1 | 1 | 38.2 ms |
46
+ | Static | 4 | 1 | 120.2 ms |
47
+ | Static | 1 | 4 | 68.7 ms |
48
+ | Static | 4 | 4 | 192.6 ms |
49
+
50
+
51
+ Static means the engine is built for the given batch size and image size combination, and CUDA graph is used to speed up.
52
 
 
53
 
54
  ## Usage Example
55
 
 
63
  cd onnxruntime
64
  ```
65
 
66
+ 2. Download the ONNX files from this repo
67
  ```shell
68
  git lfs install
69
+ git clone https://huggingface.co/tlwu/sd-turbo-onnxruntime
70
  ```
71
 
72
  3. Launch the docker
 
99
 
100
  6. Perform ONNX Runtime optimized inference
101
  ```shell
102
+ python3 demo_txt2img.py \
103
  "starry night over Golden Gate Bridge by van gogh" \
104
+ --version sd-turbo \
105
+ --engine-dir /workspace/sd-turbo-onnxruntime
106
  ```