--- library_name: transformers.js pipeline_tag: object-detection license: agpl-3.0 --- # YOLOv10: Real-Time End-to-End Object Detection ONNX weights for https://github.com/THU-MIG/yolov10. Latency-accuracy trade-offs | Size-accuracy trade-offs :-------------------------:|:-------------------------: ![latency-accuracy trade-offs](https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/cXru_kY_pRt4n4mHERnFp.png) | ![size-accuracy trade-offs](https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/8apBp9fEZW2gHVdwBN-nC.png) ## Usage (Transformers.js) If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using: ```bash npm i @xenova/transformers ``` **Example:** Perform object-detection. ```js import { AutoModel, AutoProcessor, RawImage } from '@xenova/transformers'; // Load model const model = await AutoModel.from_pretrained('onnx-community/yolov10n', { // quantized: false, // (Optional) Use unquantized version. }) // Load processor const processor = await AutoProcessor.from_pretrained('onnx-community/yolov10n'); // Read image and run processor const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/city-streets.jpg'; const image = await RawImage.read(url); const { pixel_values } = await processor(image); // Run object detection const { output0 } = await model({ images: pixel_values }); const predictions = output0.tolist()[0]; const threshold = 0.5; for (const [xmin, ymin, xmax, ymax, score, id] of predictions) { if (score < threshold) continue; const bbox = [xmin, ymin, xmax, ymax].map(x => x.toFixed(2)).join(', ') console.log(`Found "${model.config.id2label[id]}" at [${bbox}] with score ${score.toFixed(2)}.`) } // Found "car" at [447.54, 378.72, 640.04, 478.45] with score 0.93. // Found "car" at [179.04, 339.41, 398.66, 416.86] with score 0.90. // Found "bicycle" at [2.13, 518.43, 110.29, 584.21] with score 0.88. // Found "bicycle" at [352.12, 521.97, 464.05, 588.28] with score 0.85. // Found "person" at [550.97, 258.75, 591.22, 332.01] with score 0.85. // Found "bicycle" at [449.07, 473.14, 556.22, 537.92] with score 0.83. // Found "person" at [31.36, 469.01, 79.16, 572.99] with score 0.82. // Found "person" at [473.11, 430.45, 533.71, 527.05] with score 0.79. // ... ```