from typing import List, Optional, Union from transformers import PreTrainedTokenizer from typing import List, Tuple from transformers.feature_extraction_utils import BatchFeature from transformers.image_utils import ImageInput from transformers.processing_utils import ProcessorMixin from transformers.tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from transformers.utils import TensorType import torch def tokenizer_image_token(prompt, tokenizer, image_token_index=-200, return_tensors=None): if "" in prompt: image_token_pattern = re.compile(r"") prompt_chunks = re.split(r'',prompt) # Identify all the image tags image_tags = image_token_pattern.findall(prompt) input_ids = [] for i, chunk in enumerate(prompt_chunks): input_ids.extend(tokenizer(chunk).input_ids) if i < len(image_tags): #input_ids.append(-100 * (int(image_tags[i]) + 3)) input_ids.append(-200) else: prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split('')] def insert_separator(X, sep): return [ele for sublist in zip(X, [sep]*len(X)) for ele in sublist][:-1] input_ids = [] offset = 0 if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id: offset = 1 input_ids.append(prompt_chunks[0][0]) for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)): input_ids.extend(x[offset:]) # Convert to tensor if required if return_tensors is not None: if return_tensors == 'pt': return torch.tensor(input_ids, dtype=torch.long) else: raise ValueError(f'Unsupported tensor type: {return_tensors}') return input_ids def make_context( tokenizer: PreTrainedTokenizer, query: str, history: List[Tuple[str, str]] = None, system: str = "", max_window_size: int = 6144, chat_format: str = "chatml", ): if history is None: history = [] if chat_format == "chatml": im_start, im_end = "<|im_start|>", "<|im_end|>" im_start_tokens = [151644] im_end_tokens = [151645] nl_tokens = tokenizer.encode("\n") def _tokenize_str(role, content): if "" in content: return f"{role}\n{content}", tokenizer.encode( role ) + nl_tokens + tokenizer_image_token( content, tokenizer, -200 ) else: return f"{role}\n{content}", tokenizer.encode( role ) + nl_tokens + tokenizer.encode(content) def _tokenize_str2(role, content): return f"{role}\n{content}", tokenizer.encode( role, ) + nl_tokens + tokenizer.encode(content) system_text, system_tokens_part = _tokenize_str("system", system) system_tokens = im_start_tokens + system_tokens_part + im_end_tokens raw_text = "" context_tokens = [] for turn_query, turn_response in reversed(history): query_text, query_tokens_part = _tokenize_str("user", turn_query) query_tokens = im_start_tokens + query_tokens_part + im_end_tokens response_text, response_tokens_part = _tokenize_str( "assistant", turn_response ) response_tokens = im_start_tokens + response_tokens_part + im_end_tokens next_context_tokens = nl_tokens + query_tokens + nl_tokens + response_tokens prev_chat = ( f"\n{im_start}{query_text}{im_end}\n{im_start}{response_text}{im_end}" ) current_context_size = ( len(system_tokens) + len(next_context_tokens) + len(context_tokens) ) if current_context_size < max_window_size: context_tokens = next_context_tokens + context_tokens raw_text = prev_chat + raw_text else: break context_tokens = system_tokens + context_tokens raw_text = f"{im_start}{system_text}{im_end}" + raw_text context_tokens += ( nl_tokens + im_start_tokens + _tokenize_str("user", query)[1] + im_end_tokens + nl_tokens + im_start_tokens + tokenizer.encode("assistant") + nl_tokens ) raw_text += f"\n{im_start}user\n{query}{im_end}\n{im_start}assistant\n" elif chat_format == "raw": raw_text = query context_tokens = tokenizer.encode(raw_text) else: raise NotImplementedError(f"Unknown chat format {chat_format!r}") return raw_text, context_tokens def split_tensor(A, B): split_tensors = [] start_idx = 0 for i, size in enumerate(B.tolist()): split_tensor = A[i, :size, :, :, :] split_tensors.append(split_tensor) # Take the first element from the batch dimension return split_tensors class OmChatProcessor(ProcessorMixin): r""" Constructs a OmChat processor which wraps a OmChat image processor and a LLaMa tokenizer into a single processor. [`OmChatProcessor`] offers all the functionalities of [`OmChatImageProcessor`] and [`LlamaTokenizerFast`]. See the [`~OmChatProcessor.__call__`] and [`~OmChatProcessor.decode`] for more information. Args: image_processor ([`OmChatImageProcessor`], *optional*): The image processor is a required input. tokenizer ([`LlamaTokenizerFast`], *optional*): The tokenizer is a required input. chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages in a chat into a tokenizable string. """ attributes = ["image_processor", "tokenizer"] valid_kwargs = ["chat_template"] image_processor_class = "AutoImageProcessor" tokenizer_class = "AutoTokenizer" def __init__(self, image_processor=None, tokenizer=None, **kwargs): super().__init__(image_processor, tokenizer) def __call__( self, text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]], system_prompt: str = "You are a helpful assistant.", images: ImageInput = None, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH, ) -> BatchFeature: """ Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text` and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to OmChatImageProcessor's [`~OmChatImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring of the above two methods for more information. Args: text (`str`, `List[str]`, `List[List[str]]`): The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). system_prompt ('str'): the initial system prompt (i.e., You are a helpful assistant.) images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`): The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch tensor. Both channels-first and channels-last formats are supported. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Select a strategy to pad the returned sequences (according to the model's padding side and padding index) among: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). max_length (`int`, *optional*): Maximum length of the returned list and optionally padding length (see above). truncation (`bool`, *optional*): Activates truncation to cut input sequences longer than `max_length` to `max_length`. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors of a particular framework. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return NumPy `np.ndarray` objects. - `'jax'`: Return JAX `jnp.ndarray` objects. Returns: [`BatchFeature`]: A [`BatchFeature`] with the following fields: - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not `None`). - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`. """ #system_prompt="A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions." if images is not None: image_inputs = self.image_processor(images, return_tensors=return_tensors) new_images = [] new_texts = [] img = image_inputs["pixel_values"] num_patches = image_inputs["num_patches"] img = split_tensor(img, num_patches) if len(img) == 1: n = num_patches.tolist()[0] inp, context_tokens = make_context( self.tokenizer, "\n"+"\n".join(["patch:"]*(n-1)) +"\n"+ text.replace("", ""), None, system_prompt, ) else: texts = text.split("") final =texts[0] for i, n in enumerate(num_patches.tolist()): final+= "\n\n"+"\n".join(["patch:"]*(n-1))+"\n" if i+1 < len(texts): final += texts[i+1] inp, context_tokens = make_context(self.tokenizer, final, None, system_prompt) text_inputs = {"input_ids": torch.tensor([context_tokens])} image_inputs = {"images":torch.cat(img, dim=0)} return BatchFeature(data={**text_inputs, **image_inputs}) else: image_inputs = {"images":None} inp, context_tokens = make_context( self.tokenizer, text.replace("", "").strip(), None, "You are a helpful assistant.", ) text_inputs = {"input_ids": torch.tensor([context_tokens])} return BatchFeature(data={**text_inputs}) # Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) # Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama def decode(self, *args, **kwargs): """ This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) @property # Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names def model_input_names(self): tokenizer_input_names = self.tokenizer.model_input_names image_processor_input_names = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))