File size: 13,267 Bytes
d542e6b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
from typing import List, Optional, Union
from transformers import PreTrainedTokenizer
from typing import List, Tuple
from transformers.feature_extraction_utils import BatchFeature
from transformers.image_utils import ImageInput
from transformers.processing_utils import ProcessorMixin
from transformers.tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from transformers.utils import TensorType
import torch
def tokenizer_image_token(prompt, tokenizer, image_token_index=-200, return_tensors=None):
if "<image_0>" in prompt:
image_token_pattern = re.compile(r"<image_(\d+)>")
prompt_chunks = re.split(r'<image_[0-9]+>',prompt)
# Identify all the image tags
image_tags = image_token_pattern.findall(prompt)
input_ids = []
for i, chunk in enumerate(prompt_chunks):
input_ids.extend(tokenizer(chunk).input_ids)
if i < len(image_tags):
#input_ids.append(-100 * (int(image_tags[i]) + 3))
input_ids.append(-200)
else:
prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split('<image>')]
def insert_separator(X, sep):
return [ele for sublist in zip(X, [sep]*len(X)) for ele in sublist][:-1]
input_ids = []
offset = 0
if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id:
offset = 1
input_ids.append(prompt_chunks[0][0])
for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)):
input_ids.extend(x[offset:])
# Convert to tensor if required
if return_tensors is not None:
if return_tensors == 'pt':
return torch.tensor(input_ids, dtype=torch.long)
else:
raise ValueError(f'Unsupported tensor type: {return_tensors}')
return input_ids
def make_context(
tokenizer: PreTrainedTokenizer,
query: str,
history: List[Tuple[str, str]] = None,
system: str = "",
max_window_size: int = 6144,
chat_format: str = "chatml",
):
if history is None:
history = []
if chat_format == "chatml":
im_start, im_end = "<|im_start|>", "<|im_end|>"
im_start_tokens = [151644]
im_end_tokens = [151645]
nl_tokens = tokenizer.encode("\n")
def _tokenize_str(role, content):
if "<image>" in content:
return f"{role}\n{content}", tokenizer.encode(
role
) + nl_tokens + tokenizer_image_token(
content, tokenizer, -200
)
else:
return f"{role}\n{content}", tokenizer.encode(
role
) + nl_tokens + tokenizer.encode(content)
def _tokenize_str2(role, content):
return f"{role}\n{content}", tokenizer.encode(
role,
) + nl_tokens + tokenizer.encode(content)
system_text, system_tokens_part = _tokenize_str("system", system)
system_tokens = im_start_tokens + system_tokens_part + im_end_tokens
raw_text = ""
context_tokens = []
for turn_query, turn_response in reversed(history):
query_text, query_tokens_part = _tokenize_str("user", turn_query)
query_tokens = im_start_tokens + query_tokens_part + im_end_tokens
response_text, response_tokens_part = _tokenize_str(
"assistant", turn_response
)
response_tokens = im_start_tokens + response_tokens_part + im_end_tokens
next_context_tokens = nl_tokens + query_tokens + nl_tokens + response_tokens
prev_chat = (
f"\n{im_start}{query_text}{im_end}\n{im_start}{response_text}{im_end}"
)
current_context_size = (
len(system_tokens) + len(next_context_tokens) + len(context_tokens)
)
if current_context_size < max_window_size:
context_tokens = next_context_tokens + context_tokens
raw_text = prev_chat + raw_text
else:
break
context_tokens = system_tokens + context_tokens
raw_text = f"{im_start}{system_text}{im_end}" + raw_text
context_tokens += (
nl_tokens
+ im_start_tokens
+ _tokenize_str("user", query)[1]
+ im_end_tokens
+ nl_tokens
+ im_start_tokens
+ tokenizer.encode("assistant")
+ nl_tokens
)
raw_text += f"\n{im_start}user\n{query}{im_end}\n{im_start}assistant\n"
elif chat_format == "raw":
raw_text = query
context_tokens = tokenizer.encode(raw_text)
else:
raise NotImplementedError(f"Unknown chat format {chat_format!r}")
return raw_text, context_tokens
def split_tensor(A, B):
split_tensors = []
start_idx = 0
for i, size in enumerate(B.tolist()):
split_tensor = A[i, :size, :, :, :]
split_tensors.append(split_tensor) # Take the first element from the batch dimension
return split_tensors
class OmChatProcessor(ProcessorMixin):
r"""
Constructs a OmChat processor which wraps a OmChat image processor and a LLaMa tokenizer into a single processor.
[`OmChatProcessor`] offers all the functionalities of [`OmChatImageProcessor`] and [`LlamaTokenizerFast`]. See the
[`~OmChatProcessor.__call__`] and [`~OmChatProcessor.decode`] for more information.
Args:
image_processor ([`OmChatImageProcessor`], *optional*):
The image processor is a required input.
tokenizer ([`LlamaTokenizerFast`], *optional*):
The tokenizer is a required input.
chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
in a chat into a tokenizable string.
"""
attributes = ["image_processor", "tokenizer"]
valid_kwargs = ["chat_template"]
image_processor_class = "AutoImageProcessor"
tokenizer_class = "AutoTokenizer"
def __init__(self, image_processor=None, tokenizer=None, **kwargs):
super().__init__(image_processor, tokenizer)
def __call__(
self,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]],
system_prompt: str = "You are a helpful assistant.",
images: ImageInput = None,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None,
max_length: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
) -> BatchFeature:
"""
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
OmChatImageProcessor's [`~OmChatImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
of the above two methods for more information.
Args:
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
system_prompt ('str'):
the initial system prompt (i.e., You are a helpful assistant.)
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. Both channels-first and channels-last formats are supported.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding
index) among:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
max_length (`int`, *optional*):
Maximum length of the returned list and optionally padding length (see above).
truncation (`bool`, *optional*):
Activates truncation to cut input sequences longer than `max_length` to `max_length`.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
"""
#system_prompt="A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions."
if images is not None:
image_inputs = self.image_processor(images, return_tensors=return_tensors)
new_images = []
new_texts = []
img = image_inputs["pixel_values"]
num_patches = image_inputs["num_patches"]
img = split_tensor(img, num_patches)
if len(img) == 1:
n = num_patches.tolist()[0]
inp, context_tokens = make_context(
self.tokenizer,
"<image>\n"+"\n".join(["patch:<image>"]*(n-1)) +"\n"+ text.replace("<image>", ""),
None,
system_prompt,
)
else:
texts = text.split("<image>")
final =texts[0]
for i, n in enumerate(num_patches.tolist()):
final+= "\n<image>\n"+"\n".join(["patch:<image>"]*(n-1))+"\n"
if i+1 < len(texts):
final += texts[i+1]
inp, context_tokens = make_context(self.tokenizer, final, None, system_prompt)
text_inputs = {"input_ids": torch.tensor([context_tokens])}
image_inputs = {"images":torch.cat(img, dim=0)}
return BatchFeature(data={**text_inputs, **image_inputs})
else:
image_inputs = {"images":None}
inp, context_tokens = make_context(
self.tokenizer,
text.replace("<image>", "").strip(),
None,
"You are a helpful assistant.",
)
text_inputs = {"input_ids": torch.tensor([context_tokens])}
return BatchFeature(data={**text_inputs})
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|