Safetensors
custom_code
File size: 13,267 Bytes
d542e6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
from typing import List, Optional, Union

from transformers import PreTrainedTokenizer
from typing import List, Tuple

from transformers.feature_extraction_utils import BatchFeature
from transformers.image_utils import ImageInput
from transformers.processing_utils import ProcessorMixin
from transformers.tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from transformers.utils import TensorType
import torch

def tokenizer_image_token(prompt, tokenizer, image_token_index=-200, return_tensors=None):
    if "<image_0>" in prompt:
        image_token_pattern = re.compile(r"<image_(\d+)>")
        prompt_chunks = re.split(r'<image_[0-9]+>',prompt)
        # Identify all the image tags
        image_tags = image_token_pattern.findall(prompt)

        input_ids = []
        for i, chunk in enumerate(prompt_chunks):
            input_ids.extend(tokenizer(chunk).input_ids)
            if i < len(image_tags):
                #input_ids.append(-100 * (int(image_tags[i]) + 3))
                input_ids.append(-200)
    else:
        prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split('<image>')]
        def insert_separator(X, sep):
            return [ele for sublist in zip(X, [sep]*len(X)) for ele in sublist][:-1]

        input_ids = []
        offset = 0
        if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id:
            offset = 1
            input_ids.append(prompt_chunks[0][0])

        for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)):
            input_ids.extend(x[offset:])
    # Convert to tensor if required
    if return_tensors is not None:
        if return_tensors == 'pt':
            return torch.tensor(input_ids, dtype=torch.long)
        else:
            raise ValueError(f'Unsupported tensor type: {return_tensors}')

    return input_ids


def make_context(
    tokenizer: PreTrainedTokenizer,
    query: str,
    history: List[Tuple[str, str]] = None,
    system: str = "",
    max_window_size: int = 6144,
    chat_format: str = "chatml",
):
    if history is None:
        history = []

    if chat_format == "chatml":
        im_start, im_end = "<|im_start|>", "<|im_end|>"
        im_start_tokens = [151644]
        im_end_tokens = [151645]
        nl_tokens = tokenizer.encode("\n")

        def _tokenize_str(role, content):
            if "<image>" in content:
                return f"{role}\n{content}", tokenizer.encode(
                    role
                ) + nl_tokens + tokenizer_image_token(
                    content, tokenizer, -200
                )
            else:
                return f"{role}\n{content}", tokenizer.encode(
                    role
                ) + nl_tokens + tokenizer.encode(content)

        def _tokenize_str2(role, content):
            return f"{role}\n{content}", tokenizer.encode(
                role,
            ) + nl_tokens + tokenizer.encode(content)

        system_text, system_tokens_part = _tokenize_str("system", system)
        system_tokens = im_start_tokens + system_tokens_part + im_end_tokens

        raw_text = ""
        context_tokens = []

        for turn_query, turn_response in reversed(history):
            query_text, query_tokens_part = _tokenize_str("user", turn_query)
            query_tokens = im_start_tokens + query_tokens_part + im_end_tokens
            response_text, response_tokens_part = _tokenize_str(
                "assistant", turn_response
            )
            response_tokens = im_start_tokens + response_tokens_part + im_end_tokens

            next_context_tokens = nl_tokens + query_tokens + nl_tokens + response_tokens
            prev_chat = (
                f"\n{im_start}{query_text}{im_end}\n{im_start}{response_text}{im_end}"
            )

            current_context_size = (
                len(system_tokens) + len(next_context_tokens) + len(context_tokens)
            )
            if current_context_size < max_window_size:
                context_tokens = next_context_tokens + context_tokens
                raw_text = prev_chat + raw_text
            else:
                break

        context_tokens = system_tokens + context_tokens
        raw_text = f"{im_start}{system_text}{im_end}" + raw_text
        context_tokens += (
            nl_tokens
            + im_start_tokens
            + _tokenize_str("user", query)[1]
            + im_end_tokens
            + nl_tokens
            + im_start_tokens
            + tokenizer.encode("assistant")
            + nl_tokens
        )
        raw_text += f"\n{im_start}user\n{query}{im_end}\n{im_start}assistant\n"

    elif chat_format == "raw":
        raw_text = query
        context_tokens = tokenizer.encode(raw_text)
    else:
        raise NotImplementedError(f"Unknown chat format {chat_format!r}")

    return raw_text, context_tokens

def split_tensor(A, B):
    split_tensors = []
    start_idx = 0

    for i, size in enumerate(B.tolist()):
        split_tensor = A[i, :size, :, :, :]
        split_tensors.append(split_tensor)  # Take the first element from the batch dimension

    return split_tensors

class OmChatProcessor(ProcessorMixin):
    r"""
    Constructs a OmChat processor which wraps a OmChat image processor and a LLaMa tokenizer into a single processor.

    [`OmChatProcessor`] offers all the functionalities of [`OmChatImageProcessor`] and [`LlamaTokenizerFast`]. See the
    [`~OmChatProcessor.__call__`] and [`~OmChatProcessor.decode`] for more information.

    Args:
        image_processor ([`OmChatImageProcessor`], *optional*):
            The image processor is a required input.
        tokenizer ([`LlamaTokenizerFast`], *optional*):
            The tokenizer is a required input.
        chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
            in a chat into a tokenizable string.
    """

    attributes = ["image_processor", "tokenizer"]
    valid_kwargs = ["chat_template"]
    image_processor_class = "AutoImageProcessor"
    tokenizer_class = "AutoTokenizer"

    def __init__(self, image_processor=None, tokenizer=None,  **kwargs):
        super().__init__(image_processor, tokenizer)

    def __call__(
        self,
        text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]],
        system_prompt: str = "You are a helpful assistant.",
        images: ImageInput = None,
        padding: Union[bool, str, PaddingStrategy] = False,
        truncation: Union[bool, str, TruncationStrategy] = None,
        max_length: Optional[int] = None,
        return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
    ) -> BatchFeature:
        """
        Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
        and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode
        the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
        OmChatImageProcessor's [`~OmChatImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
        of the above two methods for more information.

        Args:
            text (`str`, `List[str]`, `List[List[str]]`):
                The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
                (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
                `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
            system_prompt ('str'):
                the initial system prompt (i.e., You are a helpful assistant.)
            images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
                The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
                tensor. Both channels-first and channels-last formats are supported.
            padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
                Select a strategy to pad the returned sequences (according to the model's padding side and padding
                index) among:
                - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
                  sequence if provided).
                - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
                  acceptable input length for the model if that argument is not provided.
                - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
                  lengths).
            max_length (`int`, *optional*):
                Maximum length of the returned list and optionally padding length (see above).
            truncation (`bool`, *optional*):
                Activates truncation to cut input sequences longer than `max_length` to `max_length`.
            return_tensors (`str` or [`~utils.TensorType`], *optional*):
                If set, will return tensors of a particular framework. Acceptable values are:

                - `'tf'`: Return TensorFlow `tf.constant` objects.
                - `'pt'`: Return PyTorch `torch.Tensor` objects.
                - `'np'`: Return NumPy `np.ndarray` objects.
                - `'jax'`: Return JAX `jnp.ndarray` objects.

        Returns:
            [`BatchFeature`]: A [`BatchFeature`] with the following fields:

            - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
            - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
              `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
              `None`).
            - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
        """
        #system_prompt="A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions."
        if images is not None:
            image_inputs = self.image_processor(images, return_tensors=return_tensors)
            new_images = []
            new_texts = []
            img = image_inputs["pixel_values"]
            num_patches = image_inputs["num_patches"]
            img = split_tensor(img, num_patches)
            if len(img) == 1:
                n = num_patches.tolist()[0]
                inp, context_tokens = make_context(
                    self.tokenizer,
                    "<image>\n"+"\n".join(["patch:<image>"]*(n-1)) +"\n"+ text.replace("<image>", ""),
                    None,
                    system_prompt,
                )
            
            else:
                texts = text.split("<image>")
                final =texts[0]
                for i, n in enumerate(num_patches.tolist()):
                    final+= "\n<image>\n"+"\n".join(["patch:<image>"]*(n-1))+"\n"
                    if i+1 < len(texts):
                        final += texts[i+1]
                inp, context_tokens = make_context(self.tokenizer, final, None, system_prompt)
            text_inputs = {"input_ids": torch.tensor([context_tokens])}
            image_inputs = {"images":torch.cat(img, dim=0)}
            return BatchFeature(data={**text_inputs, **image_inputs})
        else:
            image_inputs = {"images":None}
            inp, context_tokens = make_context(
                    self.tokenizer,
                    text.replace("<image>", "").strip(),
                    None,
                    "You are a helpful assistant.",
                )
            text_inputs = {"input_ids": torch.tensor([context_tokens])}

            return BatchFeature(data={**text_inputs})

    # Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama
    def batch_decode(self, *args, **kwargs):
        """
        This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
        refer to the docstring of this method for more information.
        """
        return self.tokenizer.batch_decode(*args, **kwargs)

    # Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama
    def decode(self, *args, **kwargs):
        """
        This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
        the docstring of this method for more information.
        """
        return self.tokenizer.decode(*args, **kwargs)

    @property
    # Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names
    def model_input_names(self):
        tokenizer_input_names = self.tokenizer.model_input_names
        image_processor_input_names = self.image_processor.model_input_names
        return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))