--- language: - en tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:404290 - loss:OnlineContrastiveLoss base_model: sentence-transformers/stsb-distilbert-base widget: - source_sentence: Why Modi is putting a ban on 500 and 1000 notes? sentences: - Why making multiple fake accounts on Quora is illegal? - What are the advantages of the decision taken by the Government of India to scrap out 500 and 1000 rupees notes? - Why should I go for internships? - source_sentence: Where can I buy cheap t-shirts? sentences: - Where can I buy cheap wholesale t-shirts? - How can I make money from a blog? - What are the best places to shop in Charleston, SC? - source_sentence: What are the most important mobile applications? sentences: - How can I tell if my wife's vagina had a bigger penis inside? - What is the most important apps in your phone? - What do you think Ned Stark would have done or said to Jon Snow if he was able to join the Night’s Watch or escaped his beheading? - source_sentence: What is the whole process for making Android games with high graphics? sentences: - What lf I don't accept Jesus as God? - I have to masturbate3 times to feel an orgasm sometimes only2 times what is wrong with me I went to the doctor and they do not believe meWhat's wrong? - What does a healthy diet consist of? - source_sentence: Why do so many religious people believe in healing miracles? sentences: - Is Warframe better than Destiny? - What do you like about China? - Is believing in God a bad thing? datasets: - sentence-transformers/quora-duplicates pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - cosine_accuracy - cosine_accuracy_threshold - cosine_f1 - cosine_f1_threshold - cosine_precision - cosine_recall - cosine_ap - cosine_mcc - average_precision - f1 - precision - recall - threshold - cosine_accuracy@1 - cosine_accuracy@3 - cosine_accuracy@5 - cosine_accuracy@10 - cosine_precision@1 - cosine_precision@3 - cosine_precision@5 - cosine_precision@10 - cosine_recall@1 - cosine_recall@3 - cosine_recall@5 - cosine_recall@10 - cosine_ndcg@10 - cosine_mrr@10 - cosine_map@100 model-index: - name: SentenceTransformer based on sentence-transformers/stsb-distilbert-base results: - task: type: binary-classification name: Binary Classification dataset: name: quora duplicates type: quora-duplicates metrics: - type: cosine_accuracy value: 0.877 name: Cosine Accuracy - type: cosine_accuracy_threshold value: 0.7857047319412231 name: Cosine Accuracy Threshold - type: cosine_f1 value: 0.8516284680337757 name: Cosine F1 - type: cosine_f1_threshold value: 0.774639368057251 name: Cosine F1 Threshold - type: cosine_precision value: 0.8209302325581396 name: Cosine Precision - type: cosine_recall value: 0.8847117794486216 name: Cosine Recall - type: cosine_ap value: 0.8988328505183655 name: Cosine Ap - type: cosine_mcc value: 0.7483655051498526 name: Cosine Mcc - task: type: paraphrase-mining name: Paraphrase Mining dataset: name: quora duplicates dev type: quora-duplicates-dev metrics: - type: average_precision value: 0.5483042026376685 name: Average Precision - type: f1 value: 0.5606415792720543 name: F1 - type: precision value: 0.5539301735907939 name: Precision - type: recall value: 0.5675176100314733 name: Recall - type: threshold value: 0.8631762564182281 name: Threshold - task: type: information-retrieval name: Information Retrieval dataset: name: Unknown type: unknown metrics: - type: cosine_accuracy@1 value: 0.9308 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.969 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.9778 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.9854 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.9308 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.4145333333333333 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.26696000000000003 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.14144 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.8008592901379665 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.9314231047351341 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.9558165998609235 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.9743579383296442 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.9511384841680516 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.9511976190476192 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.939071878001028 name: Cosine Map@100 --- # SentenceTransformer based on sentence-transformers/stsb-distilbert-base This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/stsb-distilbert-base](https://huggingface.co/sentence-transformers/stsb-distilbert-base) on the [quora-duplicates](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [sentence-transformers/stsb-distilbert-base](https://huggingface.co/sentence-transformers/stsb-distilbert-base) - **Maximum Sequence Length:** 128 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity - **Training Dataset:** - [quora-duplicates](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) - **Language:** en ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("omega5505/stsb-distilbert-base-ocl") # Run inference sentences = [ 'Why do so many religious people believe in healing miracles?', 'Is believing in God a bad thing?', 'What do you like about China?', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Binary Classification * Dataset: `quora-duplicates` * Evaluated with [BinaryClassificationEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator) | Metric | Value | |:--------------------------|:-----------| | cosine_accuracy | 0.877 | | cosine_accuracy_threshold | 0.7857 | | cosine_f1 | 0.8516 | | cosine_f1_threshold | 0.7746 | | cosine_precision | 0.8209 | | cosine_recall | 0.8847 | | **cosine_ap** | **0.8988** | | cosine_mcc | 0.7484 | #### Paraphrase Mining * Dataset: `quora-duplicates-dev` * Evaluated with [ParaphraseMiningEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.ParaphraseMiningEvaluator) | Metric | Value | |:----------------------|:-----------| | **average_precision** | **0.5483** | | f1 | 0.5606 | | precision | 0.5539 | | recall | 0.5675 | | threshold | 0.8632 | #### Information Retrieval * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.9308 | | cosine_accuracy@3 | 0.969 | | cosine_accuracy@5 | 0.9778 | | cosine_accuracy@10 | 0.9854 | | cosine_precision@1 | 0.9308 | | cosine_precision@3 | 0.4145 | | cosine_precision@5 | 0.267 | | cosine_precision@10 | 0.1414 | | cosine_recall@1 | 0.8009 | | cosine_recall@3 | 0.9314 | | cosine_recall@5 | 0.9558 | | cosine_recall@10 | 0.9744 | | **cosine_ndcg@10** | **0.9511** | | cosine_mrr@10 | 0.9512 | | cosine_map@100 | 0.9391 | ## Training Details ### Training Dataset #### quora-duplicates * Dataset: [quora-duplicates](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) at [451a485](https://huggingface.co/datasets/sentence-transformers/quora-duplicates/tree/451a4850bd141edb44ade1b5828c259abd762cdb) * Size: 404,290 training samples * Columns: sentence1, sentence2, and label * Approximate statistics based on the first 1000 samples: | | sentence1 | sentence2 | label | |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------| | type | string | string | int | | details | | | | * Samples: | sentence1 | sentence2 | label | |:----------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------|:---------------| | How can Trump supporters claim he didn't mock a disabled reporter when there is live footage of him mocking a disabled reporter? | Why don't people actually watch the Trump video of him allegedly mocking a disabled reporter? | 0 | | Where can I get the best digital marketing course (online & offline) in India? | Which is the best digital marketing institute for professionals in India? | 1 | | What best two liner shayri? | What does "senile dementia, uncomplicated" mean in medical terms? | 0 | * Loss: [OnlineContrastiveLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss) ### Evaluation Dataset #### quora-duplicates * Dataset: [quora-duplicates](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) at [451a485](https://huggingface.co/datasets/sentence-transformers/quora-duplicates/tree/451a4850bd141edb44ade1b5828c259abd762cdb) * Size: 404,290 evaluation samples * Columns: sentence1, sentence2, and label * Approximate statistics based on the first 1000 samples: | | sentence1 | sentence2 | label | |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------| | type | string | string | int | | details | | | | * Samples: | sentence1 | sentence2 | label | |:--------------------------------------------------------|:-----------------------------------------------------------|:---------------| | What are some must subscribe RSS feeds? | What are RSS feeds? | 0 | | How close are Madonna and Hillary Clinton? | Why do people say Hillary Clinton is a crook? | 0 | | Can you share best day of your life? | What is the Best Day of your life till date? | 1 | * Loss: [OnlineContrastiveLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss) ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `num_train_epochs`: 1 - `warmup_ratio`: 0.1 - `fp16`: True - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `eval_use_gather_object`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | Validation Loss | quora-duplicates_cosine_ap | quora-duplicates-dev_average_precision | cosine_ndcg@10 | |:------:|:----:|:-------------:|:---------------:|:--------------------------:|:--------------------------------------:|:--------------:| | 0 | 0 | - | - | 0.7458 | 0.4200 | 0.9390 | | 0.0640 | 100 | 2.5263 | - | - | - | - | | 0.1280 | 200 | 2.1489 | - | - | - | - | | 0.1599 | 250 | - | 1.8621 | 0.8433 | 0.3907 | 0.9329 | | 0.1919 | 300 | 2.0353 | - | - | - | - | | 0.2559 | 400 | 1.7831 | - | - | - | - | | 0.3199 | 500 | 1.8887 | 1.7744 | 0.8662 | 0.4924 | 0.9379 | | 0.3839 | 600 | 1.7814 | - | - | - | - | | 0.4479 | 700 | 1.7775 | - | - | - | - | | 0.4798 | 750 | - | 1.6468 | 0.8766 | 0.4945 | 0.9399 | | 0.5118 | 800 | 1.6835 | - | - | - | - | | 0.5758 | 900 | 1.6974 | - | - | - | - | | 0.6398 | 1000 | 1.5704 | 1.4925 | 0.8895 | 0.5283 | 0.9460 | | 0.7038 | 1100 | 1.6771 | - | - | - | - | | 0.7678 | 1200 | 1.619 | - | - | - | - | | 0.7997 | 1250 | - | 1.4311 | 0.8982 | 0.5252 | 0.9466 | | 0.8317 | 1300 | 1.6119 | - | - | - | - | | 0.8957 | 1400 | 1.6043 | - | - | - | - | | 0.9597 | 1500 | 1.6848 | 1.4070 | 0.8988 | 0.5483 | 0.9511 | ### Framework Versions - Python: 3.9.18 - Sentence Transformers: 3.4.1 - Transformers: 4.44.2 - PyTorch: 2.2.1+cu121 - Accelerate: 1.3.0 - Datasets: 2.19.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ```