from datasets import load_dataset import pandas as pd from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.ensemble import RandomForestClassifier from sklearn.preprocessing import StandardScaler from sklearn.metrics import classification_report, accuracy_score from category_encoders import OneHotEncoder dataset = load_dataset("ombhojane/ckv3") df = pd.DataFrame(dataset['train']) # Preprocessing # One-hot encoding for categorical features encoder = OneHotEncoder(cols=['Biodiversity', 'Existing Infrastructure'], use_cat_names=True) df_encoded = encoder.fit_transform(df) scaler = StandardScaler() df_encoded[['Land Size (hectares)', 'Budget (INR)']] = scaler.fit_transform(df_encoded[['Land Size (hectares)', 'Budget (INR)']]) # Splitting features and target X = df_encoded.drop('Service', axis=1) y = df_encoded['Service'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) model = RandomForestClassifier() param_grid = { 'n_estimators': [100, 200, 300], 'max_depth': [None, 10, 20, 30], 'min_samples_split': [2, 5, 10] } grid_search = GridSearchCV(model, param_grid, cv=5, scoring='accuracy') grid_search.fit(X_train, y_train) best_model = grid_search.best_estimator_ # Model Evaluation predictions = best_model.predict(X_test) print(classification_report(y_test, predictions)) print("Accuracy:", accuracy_score(y_test, predictions))