Omar
commited on
Commit
·
35ea748
1
Parent(s):
613d4d7
update_resylts
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- config.json +5 -3
- finetune/boolq/all_results.json +16 -0
- finetune/boolq/config.json +50 -0
- finetune/boolq/eval_results.json +11 -0
- finetune/boolq/merges.txt +0 -0
- finetune/boolq/modeling_structroberta.py +2146 -0
- finetune/boolq/predict_results.txt +724 -0
- finetune/boolq/pytorch_model.bin +3 -0
- finetune/boolq/special_tokens_map.json +15 -0
- finetune/boolq/tokenizer_config.json +65 -0
- finetune/boolq/train_results.json +8 -0
- finetune/boolq/trainer_state.json +25 -0
- finetune/boolq/training_args.bin +3 -0
- finetune/boolq/vocab.json +0 -0
- finetune/cola/all_results.json +16 -0
- finetune/cola/checkpoint-400/config.json +50 -0
- finetune/cola/checkpoint-400/merges.txt +0 -0
- finetune/cola/checkpoint-400/modeling_structroberta.py +2146 -0
- finetune/cola/checkpoint-400/optimizer.pt +3 -0
- finetune/cola/checkpoint-400/pytorch_model.bin +3 -0
- finetune/cola/checkpoint-400/rng_state.pth +3 -0
- finetune/cola/checkpoint-400/scheduler.pt +3 -0
- finetune/cola/checkpoint-400/special_tokens_map.json +15 -0
- finetune/cola/checkpoint-400/tokenizer_config.json +65 -0
- finetune/cola/checkpoint-400/trainer_state.json +27 -0
- finetune/cola/checkpoint-400/training_args.bin +3 -0
- finetune/cola/checkpoint-400/vocab.json +0 -0
- finetune/cola/config.json +50 -0
- finetune/cola/eval_results.json +11 -0
- finetune/cola/merges.txt +0 -0
- finetune/cola/modeling_structroberta.py +2146 -0
- finetune/cola/predict_results.txt +1020 -0
- finetune/cola/pytorch_model.bin +3 -0
- finetune/cola/special_tokens_map.json +15 -0
- finetune/cola/tokenizer_config.json +65 -0
- finetune/cola/train_results.json +8 -0
- finetune/cola/trainer_state.json +42 -0
- finetune/cola/training_args.bin +3 -0
- finetune/cola/vocab.json +0 -0
- finetune/control_raising_control/all_results.json +16 -0
- finetune/control_raising_control/checkpoint-400/config.json +50 -0
- finetune/control_raising_control/checkpoint-400/merges.txt +0 -0
- finetune/control_raising_control/checkpoint-400/modeling_structroberta.py +2146 -0
- finetune/control_raising_control/checkpoint-400/optimizer.pt +3 -0
- finetune/control_raising_control/checkpoint-400/pytorch_model.bin +3 -0
- finetune/control_raising_control/checkpoint-400/rng_state.pth +3 -0
- finetune/control_raising_control/checkpoint-400/scheduler.pt +3 -0
- finetune/control_raising_control/checkpoint-400/special_tokens_map.json +15 -0
- finetune/control_raising_control/checkpoint-400/tokenizer_config.json +65 -0
- finetune/control_raising_control/checkpoint-400/trainer_state.json +27 -0
config.json
CHANGED
|
@@ -1,11 +1,13 @@
|
|
| 1 |
{
|
| 2 |
"architectures": [
|
| 3 |
-
"StructRoberta"
|
|
|
|
| 4 |
],
|
| 5 |
"attention_probs_dropout_prob": 0.1,
|
| 6 |
"auto_map": {
|
| 7 |
"AutoConfig": "modeling_structroberta.StructRobertaConfig",
|
| 8 |
-
"AutoModelForMaskedLM": "modeling_structroberta.StructRoberta"
|
|
|
|
| 9 |
},
|
| 10 |
"bos_token_id": 0,
|
| 11 |
"classifier_dropout": null,
|
|
@@ -36,4 +38,4 @@
|
|
| 36 |
"use_cache": true,
|
| 37 |
"vocab_size": 32000,
|
| 38 |
"weight_act": "softmax"
|
| 39 |
-
}
|
|
|
|
| 1 |
{
|
| 2 |
"architectures": [
|
| 3 |
+
"StructRoberta",
|
| 4 |
+
"StructRobertaForSequenceClassification"
|
| 5 |
],
|
| 6 |
"attention_probs_dropout_prob": 0.1,
|
| 7 |
"auto_map": {
|
| 8 |
"AutoConfig": "modeling_structroberta.StructRobertaConfig",
|
| 9 |
+
"AutoModelForMaskedLM": "modeling_structroberta.StructRoberta",
|
| 10 |
+
"AutoModelForSequenceClassification": "modeling_structroberta.StructRobertaForSequenceClassification"
|
| 11 |
},
|
| 12 |
"bos_token_id": 0,
|
| 13 |
"classifier_dropout": null,
|
|
|
|
| 38 |
"use_cache": true,
|
| 39 |
"vocab_size": 32000,
|
| 40 |
"weight_act": "softmax"
|
| 41 |
+
}
|
finetune/boolq/all_results.json
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"epoch": 10.0,
|
| 3 |
+
"eval_accuracy": 0.6486860513687134,
|
| 4 |
+
"eval_f1": 0.7221006564551423,
|
| 5 |
+
"eval_loss": 1.0183159112930298,
|
| 6 |
+
"eval_mcc": 0.25076276821098453,
|
| 7 |
+
"eval_runtime": 1.5451,
|
| 8 |
+
"eval_samples": 723,
|
| 9 |
+
"eval_samples_per_second": 467.928,
|
| 10 |
+
"eval_steps_per_second": 58.896,
|
| 11 |
+
"train_loss": 0.3817570156521267,
|
| 12 |
+
"train_runtime": 95.4851,
|
| 13 |
+
"train_samples": 2072,
|
| 14 |
+
"train_samples_per_second": 216.997,
|
| 15 |
+
"train_steps_per_second": 1.885
|
| 16 |
+
}
|
finetune/boolq/config.json
ADDED
|
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "final_models/structroberta_sx2_final",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"StructRobertaForSequenceClassification"
|
| 5 |
+
],
|
| 6 |
+
"attention_probs_dropout_prob": 0.1,
|
| 7 |
+
"auto_map": {
|
| 8 |
+
"AutoConfig": "modeling_structroberta.StructRobertaConfig",
|
| 9 |
+
"AutoModelForMaskedLM": "modeling_structroberta.StructRoberta",
|
| 10 |
+
"AutoModelForSequenceClassification": "modeling_structroberta.StructRobertaForSequenceClassification"
|
| 11 |
+
},
|
| 12 |
+
"bos_token_id": 0,
|
| 13 |
+
"classifier_dropout": null,
|
| 14 |
+
"conv_size": 9,
|
| 15 |
+
"eos_token_id": 2,
|
| 16 |
+
"hidden_act": "gelu",
|
| 17 |
+
"hidden_dropout_prob": 0.1,
|
| 18 |
+
"hidden_size": 768,
|
| 19 |
+
"id2label": {
|
| 20 |
+
"0": 0,
|
| 21 |
+
"1": 1
|
| 22 |
+
},
|
| 23 |
+
"initializer_range": 0.02,
|
| 24 |
+
"intermediate_size": 3072,
|
| 25 |
+
"label2id": {
|
| 26 |
+
"0": 0,
|
| 27 |
+
"1": 1
|
| 28 |
+
},
|
| 29 |
+
"layer_norm_eps": 1e-05,
|
| 30 |
+
"max_position_embeddings": 514,
|
| 31 |
+
"model_type": "roberta",
|
| 32 |
+
"n_cntxt_layers": 4,
|
| 33 |
+
"n_cntxt_layers_2": 0,
|
| 34 |
+
"n_parser_layers": 6,
|
| 35 |
+
"num_attention_heads": 12,
|
| 36 |
+
"num_hidden_layers": 8,
|
| 37 |
+
"pad_token_id": 1,
|
| 38 |
+
"position_embedding_type": "absolute",
|
| 39 |
+
"problem_type": "single_label_classification",
|
| 40 |
+
"relations": [
|
| 41 |
+
"head",
|
| 42 |
+
"child"
|
| 43 |
+
],
|
| 44 |
+
"torch_dtype": "float32",
|
| 45 |
+
"transformers_version": "4.26.1",
|
| 46 |
+
"type_vocab_size": 1,
|
| 47 |
+
"use_cache": true,
|
| 48 |
+
"vocab_size": 32000,
|
| 49 |
+
"weight_act": "softmax"
|
| 50 |
+
}
|
finetune/boolq/eval_results.json
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"epoch": 10.0,
|
| 3 |
+
"eval_accuracy": 0.6486860513687134,
|
| 4 |
+
"eval_f1": 0.7221006564551423,
|
| 5 |
+
"eval_loss": 1.0183159112930298,
|
| 6 |
+
"eval_mcc": 0.25076276821098453,
|
| 7 |
+
"eval_runtime": 1.5451,
|
| 8 |
+
"eval_samples": 723,
|
| 9 |
+
"eval_samples_per_second": 467.928,
|
| 10 |
+
"eval_steps_per_second": 58.896
|
| 11 |
+
}
|
finetune/boolq/merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
finetune/boolq/modeling_structroberta.py
ADDED
|
@@ -0,0 +1,2146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import copy
|
| 2 |
+
import math
|
| 3 |
+
from typing import List, Optional, Tuple, Union
|
| 4 |
+
import torch
|
| 5 |
+
import torch.utils.checkpoint
|
| 6 |
+
from packaging import version
|
| 7 |
+
from torch import nn
|
| 8 |
+
import torch.nn.functional as F
|
| 9 |
+
from torch.nn import CrossEntropyLoss, MSELoss, BCEWithLogitsLoss
|
| 10 |
+
from transformers.activations import ACT2FN, gelu
|
| 11 |
+
from transformers.modeling_outputs import (
|
| 12 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
| 13 |
+
BaseModelOutputWithPoolingAndCrossAttentions,
|
| 14 |
+
MaskedLMOutput,
|
| 15 |
+
SequenceClassifierOutput
|
| 16 |
+
)
|
| 17 |
+
from transformers.modeling_utils import (
|
| 18 |
+
PreTrainedModel,
|
| 19 |
+
apply_chunking_to_forward,
|
| 20 |
+
find_pruneable_heads_and_indices,
|
| 21 |
+
prune_linear_layer,
|
| 22 |
+
)
|
| 23 |
+
from transformers.utils import logging
|
| 24 |
+
from transformers import RobertaConfig
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
logger = logging.get_logger(__name__)
|
| 28 |
+
ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
| 29 |
+
"roberta-base",
|
| 30 |
+
"roberta-large",
|
| 31 |
+
"roberta-large-mnli",
|
| 32 |
+
"distilroberta-base",
|
| 33 |
+
"roberta-base-openai-detector",
|
| 34 |
+
"roberta-large-openai-detector",
|
| 35 |
+
# See all RoBERTa models at https://huggingface.co/models?filter=roberta
|
| 36 |
+
]
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
class StructRobertaConfig(RobertaConfig):
|
| 40 |
+
model_type = "roberta"
|
| 41 |
+
|
| 42 |
+
def __init__(
|
| 43 |
+
self,
|
| 44 |
+
n_parser_layers=4,
|
| 45 |
+
conv_size=9,
|
| 46 |
+
relations=("head", "child"),
|
| 47 |
+
weight_act="softmax",
|
| 48 |
+
n_cntxt_layers=3,
|
| 49 |
+
n_cntxt_layers_2=0,
|
| 50 |
+
**kwargs,):
|
| 51 |
+
|
| 52 |
+
super().__init__(**kwargs)
|
| 53 |
+
self.n_cntxt_layers = n_cntxt_layers
|
| 54 |
+
self.n_parser_layers = n_parser_layers
|
| 55 |
+
self.n_cntxt_layers_2 = n_cntxt_layers_2
|
| 56 |
+
self.conv_size = conv_size
|
| 57 |
+
self.relations = relations
|
| 58 |
+
self.weight_act = weight_act
|
| 59 |
+
|
| 60 |
+
class Conv1d(nn.Module):
|
| 61 |
+
"""1D convolution layer."""
|
| 62 |
+
|
| 63 |
+
def __init__(self, hidden_size, kernel_size, dilation=1):
|
| 64 |
+
"""Initialization.
|
| 65 |
+
|
| 66 |
+
Args:
|
| 67 |
+
hidden_size: dimension of input embeddings
|
| 68 |
+
kernel_size: convolution kernel size
|
| 69 |
+
dilation: the spacing between the kernel points
|
| 70 |
+
"""
|
| 71 |
+
super(Conv1d, self).__init__()
|
| 72 |
+
|
| 73 |
+
if kernel_size % 2 == 0:
|
| 74 |
+
padding = (kernel_size // 2) * dilation
|
| 75 |
+
self.shift = True
|
| 76 |
+
else:
|
| 77 |
+
padding = ((kernel_size - 1) // 2) * dilation
|
| 78 |
+
self.shift = False
|
| 79 |
+
self.conv = nn.Conv1d(
|
| 80 |
+
hidden_size, hidden_size, kernel_size, padding=padding, dilation=dilation
|
| 81 |
+
)
|
| 82 |
+
|
| 83 |
+
def forward(self, x):
|
| 84 |
+
"""Compute convolution.
|
| 85 |
+
|
| 86 |
+
Args:
|
| 87 |
+
x: input embeddings
|
| 88 |
+
Returns:
|
| 89 |
+
conv_output: convolution results
|
| 90 |
+
"""
|
| 91 |
+
|
| 92 |
+
if self.shift:
|
| 93 |
+
return self.conv(x.transpose(1, 2)).transpose(1, 2)[:, 1:]
|
| 94 |
+
else:
|
| 95 |
+
return self.conv(x.transpose(1, 2)).transpose(1, 2)
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
class RobertaEmbeddings(nn.Module):
|
| 99 |
+
"""
|
| 100 |
+
Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
|
| 101 |
+
"""
|
| 102 |
+
|
| 103 |
+
# Copied from transformers.models.bert.modeling_bert.BertEmbeddings.__init__
|
| 104 |
+
def __init__(self, config):
|
| 105 |
+
super().__init__()
|
| 106 |
+
self.word_embeddings = nn.Embedding(
|
| 107 |
+
config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id
|
| 108 |
+
)
|
| 109 |
+
self.position_embeddings = nn.Embedding(
|
| 110 |
+
config.max_position_embeddings, config.hidden_size
|
| 111 |
+
)
|
| 112 |
+
self.token_type_embeddings = nn.Embedding(
|
| 113 |
+
config.type_vocab_size, config.hidden_size
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
| 117 |
+
# any TensorFlow checkpoint file
|
| 118 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 119 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 120 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
| 121 |
+
self.position_embedding_type = getattr(
|
| 122 |
+
config, "position_embedding_type", "absolute"
|
| 123 |
+
)
|
| 124 |
+
self.register_buffer(
|
| 125 |
+
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1))
|
| 126 |
+
)
|
| 127 |
+
if version.parse(torch.__version__) > version.parse("1.6.0"):
|
| 128 |
+
self.register_buffer(
|
| 129 |
+
"token_type_ids",
|
| 130 |
+
torch.zeros(self.position_ids.size(), dtype=torch.long),
|
| 131 |
+
persistent=False,
|
| 132 |
+
)
|
| 133 |
+
|
| 134 |
+
# End copy
|
| 135 |
+
self.padding_idx = config.pad_token_id
|
| 136 |
+
self.position_embeddings = nn.Embedding(
|
| 137 |
+
config.max_position_embeddings,
|
| 138 |
+
config.hidden_size,
|
| 139 |
+
padding_idx=self.padding_idx,
|
| 140 |
+
)
|
| 141 |
+
|
| 142 |
+
def forward(
|
| 143 |
+
self,
|
| 144 |
+
input_ids=None,
|
| 145 |
+
token_type_ids=None,
|
| 146 |
+
position_ids=None,
|
| 147 |
+
inputs_embeds=None,
|
| 148 |
+
past_key_values_length=0,
|
| 149 |
+
):
|
| 150 |
+
if position_ids is None:
|
| 151 |
+
if input_ids is not None:
|
| 152 |
+
# Create the position ids from the input token ids. Any padded tokens remain padded.
|
| 153 |
+
position_ids = create_position_ids_from_input_ids(
|
| 154 |
+
input_ids, self.padding_idx, past_key_values_length
|
| 155 |
+
)
|
| 156 |
+
else:
|
| 157 |
+
position_ids = self.create_position_ids_from_inputs_embeds(
|
| 158 |
+
inputs_embeds
|
| 159 |
+
)
|
| 160 |
+
|
| 161 |
+
if input_ids is not None:
|
| 162 |
+
input_shape = input_ids.size()
|
| 163 |
+
else:
|
| 164 |
+
input_shape = inputs_embeds.size()[:-1]
|
| 165 |
+
|
| 166 |
+
seq_length = input_shape[1]
|
| 167 |
+
|
| 168 |
+
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
|
| 169 |
+
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
|
| 170 |
+
# issue #5664
|
| 171 |
+
if token_type_ids is None:
|
| 172 |
+
if hasattr(self, "token_type_ids"):
|
| 173 |
+
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
|
| 174 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(
|
| 175 |
+
input_shape[0], seq_length
|
| 176 |
+
)
|
| 177 |
+
token_type_ids = buffered_token_type_ids_expanded
|
| 178 |
+
else:
|
| 179 |
+
token_type_ids = torch.zeros(
|
| 180 |
+
input_shape, dtype=torch.long, device=self.position_ids.device
|
| 181 |
+
)
|
| 182 |
+
|
| 183 |
+
if inputs_embeds is None:
|
| 184 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
| 185 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
| 186 |
+
|
| 187 |
+
embeddings = inputs_embeds + token_type_embeddings
|
| 188 |
+
if self.position_embedding_type == "absolute":
|
| 189 |
+
position_embeddings = self.position_embeddings(position_ids)
|
| 190 |
+
embeddings += position_embeddings
|
| 191 |
+
embeddings = self.LayerNorm(embeddings)
|
| 192 |
+
embeddings = self.dropout(embeddings)
|
| 193 |
+
return embeddings
|
| 194 |
+
|
| 195 |
+
def create_position_ids_from_inputs_embeds(self, inputs_embeds):
|
| 196 |
+
"""
|
| 197 |
+
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
|
| 198 |
+
|
| 199 |
+
Args:
|
| 200 |
+
inputs_embeds: torch.Tensor
|
| 201 |
+
|
| 202 |
+
Returns: torch.Tensor
|
| 203 |
+
"""
|
| 204 |
+
input_shape = inputs_embeds.size()[:-1]
|
| 205 |
+
sequence_length = input_shape[1]
|
| 206 |
+
|
| 207 |
+
position_ids = torch.arange(
|
| 208 |
+
self.padding_idx + 1,
|
| 209 |
+
sequence_length + self.padding_idx + 1,
|
| 210 |
+
dtype=torch.long,
|
| 211 |
+
device=inputs_embeds.device,
|
| 212 |
+
)
|
| 213 |
+
return position_ids.unsqueeze(0).expand(input_shape)
|
| 214 |
+
|
| 215 |
+
|
| 216 |
+
# Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->Roberta
|
| 217 |
+
class RobertaSelfAttention(nn.Module):
|
| 218 |
+
def __init__(self, config, position_embedding_type=None):
|
| 219 |
+
super().__init__()
|
| 220 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(
|
| 221 |
+
config, "embedding_size"
|
| 222 |
+
):
|
| 223 |
+
raise ValueError(
|
| 224 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
| 225 |
+
f"heads ({config.num_attention_heads})"
|
| 226 |
+
)
|
| 227 |
+
|
| 228 |
+
self.num_attention_heads = config.num_attention_heads
|
| 229 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
| 230 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
| 231 |
+
|
| 232 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
| 233 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
| 234 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
| 235 |
+
|
| 236 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
| 237 |
+
self.position_embedding_type = position_embedding_type or getattr(
|
| 238 |
+
config, "position_embedding_type", "absolute"
|
| 239 |
+
)
|
| 240 |
+
if (
|
| 241 |
+
self.position_embedding_type == "relative_key"
|
| 242 |
+
or self.position_embedding_type == "relative_key_query"
|
| 243 |
+
):
|
| 244 |
+
self.max_position_embeddings = config.max_position_embeddings
|
| 245 |
+
self.distance_embedding = nn.Embedding(
|
| 246 |
+
2 * config.max_position_embeddings - 1, self.attention_head_size
|
| 247 |
+
)
|
| 248 |
+
|
| 249 |
+
self.is_decoder = config.is_decoder
|
| 250 |
+
|
| 251 |
+
def transpose_for_scores(self, x):
|
| 252 |
+
new_x_shape = x.size()[:-1] + (
|
| 253 |
+
self.num_attention_heads,
|
| 254 |
+
self.attention_head_size,
|
| 255 |
+
)
|
| 256 |
+
x = x.view(new_x_shape)
|
| 257 |
+
return x.permute(0, 2, 1, 3)
|
| 258 |
+
|
| 259 |
+
def forward(
|
| 260 |
+
self,
|
| 261 |
+
hidden_states: torch.Tensor,
|
| 262 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 263 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 264 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
| 265 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 266 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
| 267 |
+
output_attentions: Optional[bool] = False,
|
| 268 |
+
parser_att_mask=None,
|
| 269 |
+
) -> Tuple[torch.Tensor]:
|
| 270 |
+
mixed_query_layer = self.query(hidden_states)
|
| 271 |
+
|
| 272 |
+
# If this is instantiated as a cross-attention module, the keys
|
| 273 |
+
# and values come from an encoder; the attention mask needs to be
|
| 274 |
+
# such that the encoder's padding tokens are not attended to.
|
| 275 |
+
is_cross_attention = encoder_hidden_states is not None
|
| 276 |
+
|
| 277 |
+
if is_cross_attention and past_key_value is not None:
|
| 278 |
+
# reuse k,v, cross_attentions
|
| 279 |
+
key_layer = past_key_value[0]
|
| 280 |
+
value_layer = past_key_value[1]
|
| 281 |
+
attention_mask = encoder_attention_mask
|
| 282 |
+
elif is_cross_attention:
|
| 283 |
+
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
|
| 284 |
+
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
|
| 285 |
+
attention_mask = encoder_attention_mask
|
| 286 |
+
elif past_key_value is not None:
|
| 287 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
| 288 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
| 289 |
+
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
|
| 290 |
+
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
|
| 291 |
+
else:
|
| 292 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
| 293 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
| 294 |
+
|
| 295 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
| 296 |
+
|
| 297 |
+
if self.is_decoder:
|
| 298 |
+
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
| 299 |
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
| 300 |
+
# key/value_states (first "if" case)
|
| 301 |
+
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
| 302 |
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
| 303 |
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
| 304 |
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
| 305 |
+
past_key_value = (key_layer, value_layer)
|
| 306 |
+
|
| 307 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
| 308 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
| 309 |
+
|
| 310 |
+
if (
|
| 311 |
+
self.position_embedding_type == "relative_key"
|
| 312 |
+
or self.position_embedding_type == "relative_key_query"
|
| 313 |
+
):
|
| 314 |
+
seq_length = hidden_states.size()[1]
|
| 315 |
+
position_ids_l = torch.arange(
|
| 316 |
+
seq_length, dtype=torch.long, device=hidden_states.device
|
| 317 |
+
).view(-1, 1)
|
| 318 |
+
position_ids_r = torch.arange(
|
| 319 |
+
seq_length, dtype=torch.long, device=hidden_states.device
|
| 320 |
+
).view(1, -1)
|
| 321 |
+
distance = position_ids_l - position_ids_r
|
| 322 |
+
positional_embedding = self.distance_embedding(
|
| 323 |
+
distance + self.max_position_embeddings - 1
|
| 324 |
+
)
|
| 325 |
+
positional_embedding = positional_embedding.to(
|
| 326 |
+
dtype=query_layer.dtype
|
| 327 |
+
) # fp16 compatibility
|
| 328 |
+
|
| 329 |
+
if self.position_embedding_type == "relative_key":
|
| 330 |
+
relative_position_scores = torch.einsum(
|
| 331 |
+
"bhld,lrd->bhlr", query_layer, positional_embedding
|
| 332 |
+
)
|
| 333 |
+
attention_scores = attention_scores + relative_position_scores
|
| 334 |
+
elif self.position_embedding_type == "relative_key_query":
|
| 335 |
+
relative_position_scores_query = torch.einsum(
|
| 336 |
+
"bhld,lrd->bhlr", query_layer, positional_embedding
|
| 337 |
+
)
|
| 338 |
+
relative_position_scores_key = torch.einsum(
|
| 339 |
+
"bhrd,lrd->bhlr", key_layer, positional_embedding
|
| 340 |
+
)
|
| 341 |
+
attention_scores = (
|
| 342 |
+
attention_scores
|
| 343 |
+
+ relative_position_scores_query
|
| 344 |
+
+ relative_position_scores_key
|
| 345 |
+
)
|
| 346 |
+
|
| 347 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
| 348 |
+
if attention_mask is not None:
|
| 349 |
+
# Apply the attention mask is (precomputed for all layers in RobertaModel forward() function)
|
| 350 |
+
attention_scores = attention_scores + attention_mask
|
| 351 |
+
|
| 352 |
+
if parser_att_mask is None:
|
| 353 |
+
# Normalize the attention scores to probabilities.
|
| 354 |
+
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
| 355 |
+
else:
|
| 356 |
+
attention_probs = torch.sigmoid(attention_scores) * parser_att_mask
|
| 357 |
+
|
| 358 |
+
# This is actually dropping out entire tokens to attend to, which might
|
| 359 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
| 360 |
+
attention_probs = self.dropout(attention_probs)
|
| 361 |
+
|
| 362 |
+
# Mask heads if we want to
|
| 363 |
+
if head_mask is not None:
|
| 364 |
+
attention_probs = attention_probs * head_mask
|
| 365 |
+
|
| 366 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
| 367 |
+
|
| 368 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
| 369 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
| 370 |
+
context_layer = context_layer.view(new_context_layer_shape)
|
| 371 |
+
|
| 372 |
+
outputs = (
|
| 373 |
+
(context_layer, attention_probs) if output_attentions else (context_layer,)
|
| 374 |
+
)
|
| 375 |
+
|
| 376 |
+
if self.is_decoder:
|
| 377 |
+
outputs = outputs + (past_key_value,)
|
| 378 |
+
return outputs
|
| 379 |
+
|
| 380 |
+
|
| 381 |
+
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput
|
| 382 |
+
class RobertaSelfOutput(nn.Module):
|
| 383 |
+
def __init__(self, config):
|
| 384 |
+
super().__init__()
|
| 385 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
| 386 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 387 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 388 |
+
|
| 389 |
+
def forward(
|
| 390 |
+
self, hidden_states: torch.Tensor, input_tensor: torch.Tensor
|
| 391 |
+
) -> torch.Tensor:
|
| 392 |
+
hidden_states = self.dense(hidden_states)
|
| 393 |
+
hidden_states = self.dropout(hidden_states)
|
| 394 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
| 395 |
+
return hidden_states
|
| 396 |
+
|
| 397 |
+
|
| 398 |
+
# Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->Roberta
|
| 399 |
+
class RobertaAttention(nn.Module):
|
| 400 |
+
def __init__(self, config, position_embedding_type=None):
|
| 401 |
+
super().__init__()
|
| 402 |
+
self.self = RobertaSelfAttention(
|
| 403 |
+
config, position_embedding_type=position_embedding_type
|
| 404 |
+
)
|
| 405 |
+
self.output = RobertaSelfOutput(config)
|
| 406 |
+
self.pruned_heads = set()
|
| 407 |
+
|
| 408 |
+
def prune_heads(self, heads):
|
| 409 |
+
if len(heads) == 0:
|
| 410 |
+
return
|
| 411 |
+
heads, index = find_pruneable_heads_and_indices(
|
| 412 |
+
heads,
|
| 413 |
+
self.self.num_attention_heads,
|
| 414 |
+
self.self.attention_head_size,
|
| 415 |
+
self.pruned_heads,
|
| 416 |
+
)
|
| 417 |
+
|
| 418 |
+
# Prune linear layers
|
| 419 |
+
self.self.query = prune_linear_layer(self.self.query, index)
|
| 420 |
+
self.self.key = prune_linear_layer(self.self.key, index)
|
| 421 |
+
self.self.value = prune_linear_layer(self.self.value, index)
|
| 422 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
| 423 |
+
|
| 424 |
+
# Update hyper params and store pruned heads
|
| 425 |
+
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
| 426 |
+
self.self.all_head_size = (
|
| 427 |
+
self.self.attention_head_size * self.self.num_attention_heads
|
| 428 |
+
)
|
| 429 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
| 430 |
+
|
| 431 |
+
def forward(
|
| 432 |
+
self,
|
| 433 |
+
hidden_states: torch.Tensor,
|
| 434 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 435 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 436 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
| 437 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 438 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
| 439 |
+
output_attentions: Optional[bool] = False,
|
| 440 |
+
parser_att_mask=None,
|
| 441 |
+
) -> Tuple[torch.Tensor]:
|
| 442 |
+
self_outputs = self.self(
|
| 443 |
+
hidden_states,
|
| 444 |
+
attention_mask,
|
| 445 |
+
head_mask,
|
| 446 |
+
encoder_hidden_states,
|
| 447 |
+
encoder_attention_mask,
|
| 448 |
+
past_key_value,
|
| 449 |
+
output_attentions,
|
| 450 |
+
parser_att_mask=parser_att_mask,
|
| 451 |
+
)
|
| 452 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
| 453 |
+
outputs = (attention_output,) + self_outputs[
|
| 454 |
+
1:
|
| 455 |
+
] # add attentions if we output them
|
| 456 |
+
return outputs
|
| 457 |
+
|
| 458 |
+
|
| 459 |
+
# Copied from transformers.models.bert.modeling_bert.BertIntermediate
|
| 460 |
+
class RobertaIntermediate(nn.Module):
|
| 461 |
+
def __init__(self, config):
|
| 462 |
+
super().__init__()
|
| 463 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
| 464 |
+
if isinstance(config.hidden_act, str):
|
| 465 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
| 466 |
+
else:
|
| 467 |
+
self.intermediate_act_fn = config.hidden_act
|
| 468 |
+
|
| 469 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 470 |
+
hidden_states = self.dense(hidden_states)
|
| 471 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
| 472 |
+
return hidden_states
|
| 473 |
+
|
| 474 |
+
|
| 475 |
+
# Copied from transformers.models.bert.modeling_bert.BertOutput
|
| 476 |
+
class RobertaOutput(nn.Module):
|
| 477 |
+
def __init__(self, config):
|
| 478 |
+
super().__init__()
|
| 479 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
| 480 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 481 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 482 |
+
|
| 483 |
+
def forward(
|
| 484 |
+
self, hidden_states: torch.Tensor, input_tensor: torch.Tensor
|
| 485 |
+
) -> torch.Tensor:
|
| 486 |
+
hidden_states = self.dense(hidden_states)
|
| 487 |
+
hidden_states = self.dropout(hidden_states)
|
| 488 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
| 489 |
+
return hidden_states
|
| 490 |
+
|
| 491 |
+
|
| 492 |
+
# Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->Roberta
|
| 493 |
+
class RobertaLayer(nn.Module):
|
| 494 |
+
def __init__(self, config):
|
| 495 |
+
super().__init__()
|
| 496 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
| 497 |
+
self.seq_len_dim = 1
|
| 498 |
+
self.attention = RobertaAttention(config)
|
| 499 |
+
self.is_decoder = config.is_decoder
|
| 500 |
+
self.add_cross_attention = config.add_cross_attention
|
| 501 |
+
if self.add_cross_attention:
|
| 502 |
+
if not self.is_decoder:
|
| 503 |
+
raise ValueError(
|
| 504 |
+
f"{self} should be used as a decoder model if cross attention is added"
|
| 505 |
+
)
|
| 506 |
+
self.crossattention = RobertaAttention(
|
| 507 |
+
config, position_embedding_type="absolute"
|
| 508 |
+
)
|
| 509 |
+
self.intermediate = RobertaIntermediate(config)
|
| 510 |
+
self.output = RobertaOutput(config)
|
| 511 |
+
|
| 512 |
+
def forward(
|
| 513 |
+
self,
|
| 514 |
+
hidden_states: torch.Tensor,
|
| 515 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 516 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 517 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
| 518 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 519 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
| 520 |
+
output_attentions: Optional[bool] = False,
|
| 521 |
+
parser_att_mask=None,
|
| 522 |
+
) -> Tuple[torch.Tensor]:
|
| 523 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
| 524 |
+
self_attn_past_key_value = (
|
| 525 |
+
past_key_value[:2] if past_key_value is not None else None
|
| 526 |
+
)
|
| 527 |
+
self_attention_outputs = self.attention(
|
| 528 |
+
hidden_states,
|
| 529 |
+
attention_mask,
|
| 530 |
+
head_mask,
|
| 531 |
+
output_attentions=output_attentions,
|
| 532 |
+
past_key_value=self_attn_past_key_value,
|
| 533 |
+
parser_att_mask=parser_att_mask,
|
| 534 |
+
)
|
| 535 |
+
attention_output = self_attention_outputs[0]
|
| 536 |
+
|
| 537 |
+
# if decoder, the last output is tuple of self-attn cache
|
| 538 |
+
if self.is_decoder:
|
| 539 |
+
outputs = self_attention_outputs[1:-1]
|
| 540 |
+
present_key_value = self_attention_outputs[-1]
|
| 541 |
+
else:
|
| 542 |
+
outputs = self_attention_outputs[
|
| 543 |
+
1:
|
| 544 |
+
] # add self attentions if we output attention weights
|
| 545 |
+
|
| 546 |
+
cross_attn_present_key_value = None
|
| 547 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
| 548 |
+
if not hasattr(self, "crossattention"):
|
| 549 |
+
raise ValueError(
|
| 550 |
+
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers by setting `config.add_cross_attention=True`"
|
| 551 |
+
)
|
| 552 |
+
|
| 553 |
+
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
|
| 554 |
+
cross_attn_past_key_value = (
|
| 555 |
+
past_key_value[-2:] if past_key_value is not None else None
|
| 556 |
+
)
|
| 557 |
+
cross_attention_outputs = self.crossattention(
|
| 558 |
+
attention_output,
|
| 559 |
+
attention_mask,
|
| 560 |
+
head_mask,
|
| 561 |
+
encoder_hidden_states,
|
| 562 |
+
encoder_attention_mask,
|
| 563 |
+
cross_attn_past_key_value,
|
| 564 |
+
output_attentions,
|
| 565 |
+
)
|
| 566 |
+
attention_output = cross_attention_outputs[0]
|
| 567 |
+
outputs = (
|
| 568 |
+
outputs + cross_attention_outputs[1:-1]
|
| 569 |
+
) # add cross attentions if we output attention weights
|
| 570 |
+
|
| 571 |
+
# add cross-attn cache to positions 3,4 of present_key_value tuple
|
| 572 |
+
cross_attn_present_key_value = cross_attention_outputs[-1]
|
| 573 |
+
present_key_value = present_key_value + cross_attn_present_key_value
|
| 574 |
+
|
| 575 |
+
layer_output = apply_chunking_to_forward(
|
| 576 |
+
self.feed_forward_chunk,
|
| 577 |
+
self.chunk_size_feed_forward,
|
| 578 |
+
self.seq_len_dim,
|
| 579 |
+
attention_output,
|
| 580 |
+
)
|
| 581 |
+
outputs = (layer_output,) + outputs
|
| 582 |
+
|
| 583 |
+
# if decoder, return the attn key/values as the last output
|
| 584 |
+
if self.is_decoder:
|
| 585 |
+
outputs = outputs + (present_key_value,)
|
| 586 |
+
|
| 587 |
+
return outputs
|
| 588 |
+
|
| 589 |
+
def feed_forward_chunk(self, attention_output):
|
| 590 |
+
intermediate_output = self.intermediate(attention_output)
|
| 591 |
+
layer_output = self.output(intermediate_output, attention_output)
|
| 592 |
+
return layer_output
|
| 593 |
+
|
| 594 |
+
|
| 595 |
+
# Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->Roberta
|
| 596 |
+
class RobertaEncoder(nn.Module):
|
| 597 |
+
def __init__(self, config):
|
| 598 |
+
super().__init__()
|
| 599 |
+
self.config = config
|
| 600 |
+
self.layer = nn.ModuleList(
|
| 601 |
+
[RobertaLayer(config) for _ in range(config.num_hidden_layers)]
|
| 602 |
+
)
|
| 603 |
+
self.gradient_checkpointing = False
|
| 604 |
+
|
| 605 |
+
def forward(
|
| 606 |
+
self,
|
| 607 |
+
hidden_states: torch.Tensor,
|
| 608 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 609 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 610 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
| 611 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 612 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
| 613 |
+
use_cache: Optional[bool] = None,
|
| 614 |
+
output_attentions: Optional[bool] = False,
|
| 615 |
+
output_hidden_states: Optional[bool] = False,
|
| 616 |
+
return_dict: Optional[bool] = True,
|
| 617 |
+
parser_att_mask=None,
|
| 618 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
|
| 619 |
+
all_hidden_states = () if output_hidden_states else None
|
| 620 |
+
all_self_attentions = () if output_attentions else None
|
| 621 |
+
all_cross_attentions = (
|
| 622 |
+
() if output_attentions and self.config.add_cross_attention else None
|
| 623 |
+
)
|
| 624 |
+
|
| 625 |
+
next_decoder_cache = () if use_cache else None
|
| 626 |
+
for i, layer_module in enumerate(self.layer):
|
| 627 |
+
if output_hidden_states:
|
| 628 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 629 |
+
|
| 630 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
| 631 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
| 632 |
+
|
| 633 |
+
if self.gradient_checkpointing and self.training:
|
| 634 |
+
|
| 635 |
+
if use_cache:
|
| 636 |
+
logger.warning(
|
| 637 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
| 638 |
+
)
|
| 639 |
+
use_cache = False
|
| 640 |
+
|
| 641 |
+
def create_custom_forward(module):
|
| 642 |
+
def custom_forward(*inputs):
|
| 643 |
+
return module(*inputs, past_key_value, output_attentions)
|
| 644 |
+
|
| 645 |
+
return custom_forward
|
| 646 |
+
|
| 647 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
| 648 |
+
create_custom_forward(layer_module),
|
| 649 |
+
hidden_states,
|
| 650 |
+
attention_mask,
|
| 651 |
+
layer_head_mask,
|
| 652 |
+
encoder_hidden_states,
|
| 653 |
+
encoder_attention_mask,
|
| 654 |
+
)
|
| 655 |
+
else:
|
| 656 |
+
if parser_att_mask is not None:
|
| 657 |
+
layer_outputs = layer_module(
|
| 658 |
+
hidden_states,
|
| 659 |
+
attention_mask,
|
| 660 |
+
layer_head_mask,
|
| 661 |
+
encoder_hidden_states,
|
| 662 |
+
encoder_attention_mask,
|
| 663 |
+
past_key_value,
|
| 664 |
+
output_attentions,
|
| 665 |
+
parser_att_mask=parser_att_mask[i])
|
| 666 |
+
else:
|
| 667 |
+
layer_outputs = layer_module(
|
| 668 |
+
hidden_states,
|
| 669 |
+
attention_mask,
|
| 670 |
+
layer_head_mask,
|
| 671 |
+
encoder_hidden_states,
|
| 672 |
+
encoder_attention_mask,
|
| 673 |
+
past_key_value,
|
| 674 |
+
output_attentions,
|
| 675 |
+
parser_att_mask=None)
|
| 676 |
+
|
| 677 |
+
|
| 678 |
+
hidden_states = layer_outputs[0]
|
| 679 |
+
if use_cache:
|
| 680 |
+
next_decoder_cache += (layer_outputs[-1],)
|
| 681 |
+
if output_attentions:
|
| 682 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
| 683 |
+
if self.config.add_cross_attention:
|
| 684 |
+
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
|
| 685 |
+
|
| 686 |
+
if output_hidden_states:
|
| 687 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 688 |
+
|
| 689 |
+
if not return_dict:
|
| 690 |
+
return tuple(
|
| 691 |
+
v
|
| 692 |
+
for v in [
|
| 693 |
+
hidden_states,
|
| 694 |
+
next_decoder_cache,
|
| 695 |
+
all_hidden_states,
|
| 696 |
+
all_self_attentions,
|
| 697 |
+
all_cross_attentions,
|
| 698 |
+
]
|
| 699 |
+
if v is not None
|
| 700 |
+
)
|
| 701 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
| 702 |
+
last_hidden_state=hidden_states,
|
| 703 |
+
past_key_values=next_decoder_cache,
|
| 704 |
+
hidden_states=all_hidden_states,
|
| 705 |
+
attentions=all_self_attentions,
|
| 706 |
+
cross_attentions=all_cross_attentions,
|
| 707 |
+
)
|
| 708 |
+
|
| 709 |
+
|
| 710 |
+
# Copied from transformers.models.bert.modeling_bert.BertPooler
|
| 711 |
+
class RobertaPooler(nn.Module):
|
| 712 |
+
def __init__(self, config):
|
| 713 |
+
super().__init__()
|
| 714 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
| 715 |
+
self.activation = nn.Tanh()
|
| 716 |
+
|
| 717 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 718 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
| 719 |
+
# to the first token.
|
| 720 |
+
first_token_tensor = hidden_states[:, 0]
|
| 721 |
+
pooled_output = self.dense(first_token_tensor)
|
| 722 |
+
pooled_output = self.activation(pooled_output)
|
| 723 |
+
return pooled_output
|
| 724 |
+
|
| 725 |
+
|
| 726 |
+
class RobertaPreTrainedModel(PreTrainedModel):
|
| 727 |
+
"""
|
| 728 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
| 729 |
+
models.
|
| 730 |
+
"""
|
| 731 |
+
|
| 732 |
+
config_class = RobertaConfig
|
| 733 |
+
base_model_prefix = "roberta"
|
| 734 |
+
supports_gradient_checkpointing = True
|
| 735 |
+
|
| 736 |
+
# Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights
|
| 737 |
+
def _init_weights(self, module):
|
| 738 |
+
"""Initialize the weights"""
|
| 739 |
+
if isinstance(module, nn.Linear):
|
| 740 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
| 741 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
| 742 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 743 |
+
if module.bias is not None:
|
| 744 |
+
module.bias.data.zero_()
|
| 745 |
+
elif isinstance(module, nn.Embedding):
|
| 746 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 747 |
+
if module.padding_idx is not None:
|
| 748 |
+
module.weight.data[module.padding_idx].zero_()
|
| 749 |
+
elif isinstance(module, nn.LayerNorm):
|
| 750 |
+
if module.bias is not None:
|
| 751 |
+
module.bias.data.zero_()
|
| 752 |
+
module.weight.data.fill_(1.0)
|
| 753 |
+
|
| 754 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
| 755 |
+
if isinstance(module, RobertaEncoder):
|
| 756 |
+
module.gradient_checkpointing = value
|
| 757 |
+
|
| 758 |
+
def update_keys_to_ignore(self, config, del_keys_to_ignore):
|
| 759 |
+
"""Remove some keys from ignore list"""
|
| 760 |
+
if not config.tie_word_embeddings:
|
| 761 |
+
# must make a new list, or the class variable gets modified!
|
| 762 |
+
self._keys_to_ignore_on_save = [
|
| 763 |
+
k for k in self._keys_to_ignore_on_save if k not in del_keys_to_ignore
|
| 764 |
+
]
|
| 765 |
+
self._keys_to_ignore_on_load_missing = [
|
| 766 |
+
k
|
| 767 |
+
for k in self._keys_to_ignore_on_load_missing
|
| 768 |
+
if k not in del_keys_to_ignore
|
| 769 |
+
]
|
| 770 |
+
|
| 771 |
+
|
| 772 |
+
ROBERTA_START_DOCSTRING = r"""
|
| 773 |
+
|
| 774 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
| 775 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
| 776 |
+
etc.)
|
| 777 |
+
|
| 778 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
| 779 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
| 780 |
+
and behavior.
|
| 781 |
+
|
| 782 |
+
Parameters:
|
| 783 |
+
config ([`RobertaConfig`]): Model configuration class with all the parameters of the
|
| 784 |
+
model. Initializing with a config file does not load the weights associated with the model, only the
|
| 785 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
| 786 |
+
"""
|
| 787 |
+
|
| 788 |
+
|
| 789 |
+
ROBERTA_INPUTS_DOCSTRING = r"""
|
| 790 |
+
Args:
|
| 791 |
+
input_ids (`torch.LongTensor` of shape `({0})`):
|
| 792 |
+
Indices of input sequence tokens in the vocabulary.
|
| 793 |
+
|
| 794 |
+
Indices can be obtained using [`RobertaTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 795 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 796 |
+
|
| 797 |
+
[What are input IDs?](../glossary#input-ids)
|
| 798 |
+
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
| 799 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 800 |
+
|
| 801 |
+
- 1 for tokens that are **not masked**,
|
| 802 |
+
- 0 for tokens that are **masked**.
|
| 803 |
+
|
| 804 |
+
[What are attention masks?](../glossary#attention-mask)
|
| 805 |
+
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
| 806 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
| 807 |
+
1]`:
|
| 808 |
+
|
| 809 |
+
- 0 corresponds to a *sentence A* token,
|
| 810 |
+
- 1 corresponds to a *sentence B* token.
|
| 811 |
+
|
| 812 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
| 813 |
+
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
| 814 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
| 815 |
+
config.max_position_embeddings - 1]`.
|
| 816 |
+
|
| 817 |
+
[What are position IDs?](../glossary#position-ids)
|
| 818 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
| 819 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
| 820 |
+
|
| 821 |
+
- 1 indicates the head is **not masked**,
|
| 822 |
+
- 0 indicates the head is **masked**.
|
| 823 |
+
|
| 824 |
+
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
| 825 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
| 826 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
| 827 |
+
model's internal embedding lookup matrix.
|
| 828 |
+
output_attentions (`bool`, *optional*):
|
| 829 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 830 |
+
tensors for more detail.
|
| 831 |
+
output_hidden_states (`bool`, *optional*):
|
| 832 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 833 |
+
more detail.
|
| 834 |
+
return_dict (`bool`, *optional*):
|
| 835 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 836 |
+
"""
|
| 837 |
+
|
| 838 |
+
|
| 839 |
+
class RobertaModel(RobertaPreTrainedModel):
|
| 840 |
+
"""
|
| 841 |
+
|
| 842 |
+
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
|
| 843 |
+
cross-attention is added between the self-attention layers, following the architecture described in *Attention is
|
| 844 |
+
all you need*_ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
|
| 845 |
+
Kaiser and Illia Polosukhin.
|
| 846 |
+
|
| 847 |
+
To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
|
| 848 |
+
to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
|
| 849 |
+
`add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
|
| 850 |
+
|
| 851 |
+
.. _*Attention is all you need*: https://arxiv.org/abs/1706.03762
|
| 852 |
+
|
| 853 |
+
"""
|
| 854 |
+
|
| 855 |
+
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
| 856 |
+
|
| 857 |
+
# Copied from transformers.models.bert.modeling_bert.BertModel.__init__ with Bert->Roberta
|
| 858 |
+
def __init__(self, config, add_pooling_layer=True):
|
| 859 |
+
super().__init__(config)
|
| 860 |
+
self.config = config
|
| 861 |
+
|
| 862 |
+
self.embeddings = RobertaEmbeddings(config)
|
| 863 |
+
self.encoder = RobertaEncoder(config)
|
| 864 |
+
|
| 865 |
+
self.pooler = RobertaPooler(config) if add_pooling_layer else None
|
| 866 |
+
|
| 867 |
+
# Initialize weights and apply final processing
|
| 868 |
+
self.post_init()
|
| 869 |
+
|
| 870 |
+
def get_input_embeddings(self):
|
| 871 |
+
return self.embeddings.word_embeddings
|
| 872 |
+
|
| 873 |
+
def set_input_embeddings(self, value):
|
| 874 |
+
self.embeddings.word_embeddings = value
|
| 875 |
+
|
| 876 |
+
def _prune_heads(self, heads_to_prune):
|
| 877 |
+
"""
|
| 878 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
| 879 |
+
class PreTrainedModel
|
| 880 |
+
"""
|
| 881 |
+
for layer, heads in heads_to_prune.items():
|
| 882 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
| 883 |
+
|
| 884 |
+
# Copied from transformers.models.bert.modeling_bert.BertModel.forward
|
| 885 |
+
def forward(
|
| 886 |
+
self,
|
| 887 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 888 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 889 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
| 890 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 891 |
+
head_mask: Optional[torch.Tensor] = None,
|
| 892 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 893 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 894 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
| 895 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 896 |
+
use_cache: Optional[bool] = None,
|
| 897 |
+
output_attentions: Optional[bool] = None,
|
| 898 |
+
output_hidden_states: Optional[bool] = None,
|
| 899 |
+
return_dict: Optional[bool] = None,
|
| 900 |
+
parser_att_mask=None,
|
| 901 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
|
| 902 |
+
r"""
|
| 903 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
| 904 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
| 905 |
+
the model is configured as a decoder.
|
| 906 |
+
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 907 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
| 908 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
| 909 |
+
|
| 910 |
+
- 1 for tokens that are **not masked**,
|
| 911 |
+
- 0 for tokens that are **masked**.
|
| 912 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
| 913 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
| 914 |
+
|
| 915 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
| 916 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
| 917 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
| 918 |
+
use_cache (`bool`, *optional*):
|
| 919 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
| 920 |
+
`past_key_values`).
|
| 921 |
+
"""
|
| 922 |
+
output_attentions = (
|
| 923 |
+
output_attentions
|
| 924 |
+
if output_attentions is not None
|
| 925 |
+
else self.config.output_attentions
|
| 926 |
+
)
|
| 927 |
+
output_hidden_states = (
|
| 928 |
+
output_hidden_states
|
| 929 |
+
if output_hidden_states is not None
|
| 930 |
+
else self.config.output_hidden_states
|
| 931 |
+
)
|
| 932 |
+
return_dict = (
|
| 933 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
| 934 |
+
)
|
| 935 |
+
|
| 936 |
+
if self.config.is_decoder:
|
| 937 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 938 |
+
else:
|
| 939 |
+
use_cache = False
|
| 940 |
+
|
| 941 |
+
if input_ids is not None and inputs_embeds is not None:
|
| 942 |
+
raise ValueError(
|
| 943 |
+
"You cannot specify both input_ids and inputs_embeds at the same time"
|
| 944 |
+
)
|
| 945 |
+
elif input_ids is not None:
|
| 946 |
+
input_shape = input_ids.size()
|
| 947 |
+
elif inputs_embeds is not None:
|
| 948 |
+
input_shape = inputs_embeds.size()[:-1]
|
| 949 |
+
else:
|
| 950 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
| 951 |
+
|
| 952 |
+
batch_size, seq_length = input_shape
|
| 953 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
| 954 |
+
|
| 955 |
+
# past_key_values_length
|
| 956 |
+
past_key_values_length = (
|
| 957 |
+
past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
| 958 |
+
)
|
| 959 |
+
|
| 960 |
+
if attention_mask is None:
|
| 961 |
+
attention_mask = torch.ones(
|
| 962 |
+
((batch_size, seq_length + past_key_values_length)), device=device
|
| 963 |
+
)
|
| 964 |
+
|
| 965 |
+
if token_type_ids is None:
|
| 966 |
+
if hasattr(self.embeddings, "token_type_ids"):
|
| 967 |
+
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
|
| 968 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(
|
| 969 |
+
batch_size, seq_length
|
| 970 |
+
)
|
| 971 |
+
token_type_ids = buffered_token_type_ids_expanded
|
| 972 |
+
else:
|
| 973 |
+
token_type_ids = torch.zeros(
|
| 974 |
+
input_shape, dtype=torch.long, device=device
|
| 975 |
+
)
|
| 976 |
+
|
| 977 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
| 978 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
| 979 |
+
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(
|
| 980 |
+
attention_mask, input_shape, device
|
| 981 |
+
)
|
| 982 |
+
|
| 983 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
| 984 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
| 985 |
+
if self.config.is_decoder and encoder_hidden_states is not None:
|
| 986 |
+
(
|
| 987 |
+
encoder_batch_size,
|
| 988 |
+
encoder_sequence_length,
|
| 989 |
+
_,
|
| 990 |
+
) = encoder_hidden_states.size()
|
| 991 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
| 992 |
+
if encoder_attention_mask is None:
|
| 993 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
| 994 |
+
encoder_extended_attention_mask = self.invert_attention_mask(
|
| 995 |
+
encoder_attention_mask
|
| 996 |
+
)
|
| 997 |
+
else:
|
| 998 |
+
encoder_extended_attention_mask = None
|
| 999 |
+
|
| 1000 |
+
# Prepare head mask if needed
|
| 1001 |
+
# 1.0 in head_mask indicate we keep the head
|
| 1002 |
+
# attention_probs has shape bsz x n_heads x N x N
|
| 1003 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
| 1004 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
| 1005 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
| 1006 |
+
|
| 1007 |
+
embedding_output = self.embeddings(
|
| 1008 |
+
input_ids=input_ids,
|
| 1009 |
+
position_ids=position_ids,
|
| 1010 |
+
token_type_ids=token_type_ids,
|
| 1011 |
+
inputs_embeds=inputs_embeds,
|
| 1012 |
+
past_key_values_length=past_key_values_length,
|
| 1013 |
+
)
|
| 1014 |
+
encoder_outputs = self.encoder(
|
| 1015 |
+
embedding_output,
|
| 1016 |
+
attention_mask=extended_attention_mask,
|
| 1017 |
+
head_mask=head_mask,
|
| 1018 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 1019 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
| 1020 |
+
past_key_values=past_key_values,
|
| 1021 |
+
use_cache=use_cache,
|
| 1022 |
+
output_attentions=output_attentions,
|
| 1023 |
+
output_hidden_states=output_hidden_states,
|
| 1024 |
+
return_dict=return_dict,
|
| 1025 |
+
parser_att_mask=parser_att_mask,
|
| 1026 |
+
)
|
| 1027 |
+
sequence_output = encoder_outputs[0]
|
| 1028 |
+
pooled_output = (
|
| 1029 |
+
self.pooler(sequence_output) if self.pooler is not None else None
|
| 1030 |
+
)
|
| 1031 |
+
|
| 1032 |
+
if not return_dict:
|
| 1033 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
| 1034 |
+
|
| 1035 |
+
return BaseModelOutputWithPoolingAndCrossAttentions(
|
| 1036 |
+
last_hidden_state=sequence_output,
|
| 1037 |
+
pooler_output=pooled_output,
|
| 1038 |
+
past_key_values=encoder_outputs.past_key_values,
|
| 1039 |
+
hidden_states=encoder_outputs.hidden_states,
|
| 1040 |
+
attentions=encoder_outputs.attentions,
|
| 1041 |
+
cross_attentions=encoder_outputs.cross_attentions,
|
| 1042 |
+
)
|
| 1043 |
+
|
| 1044 |
+
|
| 1045 |
+
class StructRoberta(RobertaPreTrainedModel):
|
| 1046 |
+
_keys_to_ignore_on_save = [r"lm_head.decoder.weight", r"lm_head.decoder.bias"]
|
| 1047 |
+
_keys_to_ignore_on_load_missing = [
|
| 1048 |
+
r"position_ids",
|
| 1049 |
+
r"lm_head.decoder.weight",
|
| 1050 |
+
r"lm_head.decoder.bias",
|
| 1051 |
+
]
|
| 1052 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
| 1053 |
+
|
| 1054 |
+
def __init__(self, config):
|
| 1055 |
+
super().__init__(config)
|
| 1056 |
+
|
| 1057 |
+
if config.is_decoder:
|
| 1058 |
+
logger.warning(
|
| 1059 |
+
"If you want to use `RobertaForMaskedLM` make sure `config.is_decoder=False` for "
|
| 1060 |
+
"bi-directional self-attention."
|
| 1061 |
+
)
|
| 1062 |
+
|
| 1063 |
+
|
| 1064 |
+
if config.n_cntxt_layers > 0:
|
| 1065 |
+
config_cntxt = copy.deepcopy(config)
|
| 1066 |
+
config_cntxt.num_hidden_layers = config.n_cntxt_layers
|
| 1067 |
+
|
| 1068 |
+
self.cntxt_layers = RobertaModel(config_cntxt, add_pooling_layer=False)
|
| 1069 |
+
|
| 1070 |
+
if config.n_cntxt_layers_2 > 0:
|
| 1071 |
+
self.parser_layers_1 = nn.ModuleList(
|
| 1072 |
+
[
|
| 1073 |
+
nn.Sequential(
|
| 1074 |
+
Conv1d(config.hidden_size, config.conv_size),
|
| 1075 |
+
nn.LayerNorm(config.hidden_size, elementwise_affine=False),
|
| 1076 |
+
nn.Tanh(),
|
| 1077 |
+
)
|
| 1078 |
+
for i in range(int(config.n_parser_layers/2))
|
| 1079 |
+
]
|
| 1080 |
+
)
|
| 1081 |
+
|
| 1082 |
+
self.distance_ff_1 = nn.Sequential(
|
| 1083 |
+
Conv1d(config.hidden_size, 2),
|
| 1084 |
+
nn.LayerNorm(config.hidden_size, elementwise_affine=False),
|
| 1085 |
+
nn.Tanh(),
|
| 1086 |
+
nn.Linear(config.hidden_size, 1),
|
| 1087 |
+
)
|
| 1088 |
+
|
| 1089 |
+
self.height_ff_1 = nn.Sequential(
|
| 1090 |
+
nn.Linear(config.hidden_size, config.hidden_size),
|
| 1091 |
+
nn.LayerNorm(config.hidden_size, elementwise_affine=False),
|
| 1092 |
+
nn.Tanh(),
|
| 1093 |
+
nn.Linear(config.hidden_size, 1),
|
| 1094 |
+
)
|
| 1095 |
+
|
| 1096 |
+
n_rel = len(config.relations)
|
| 1097 |
+
self._rel_weight_1 = nn.Parameter(
|
| 1098 |
+
torch.zeros((config.n_cntxt_layers_2, config.num_attention_heads, n_rel))
|
| 1099 |
+
)
|
| 1100 |
+
self._rel_weight_1.data.normal_(0, 0.1)
|
| 1101 |
+
|
| 1102 |
+
self._scaler_1 = nn.Parameter(torch.zeros(2))
|
| 1103 |
+
|
| 1104 |
+
config_cntxt_2 = copy.deepcopy(config)
|
| 1105 |
+
config_cntxt_2.num_hidden_layers = config.n_cntxt_layers_2
|
| 1106 |
+
|
| 1107 |
+
self.cntxt_layers_2 = RobertaModel(config_cntxt_2, add_pooling_layer=False)
|
| 1108 |
+
|
| 1109 |
+
|
| 1110 |
+
self.parser_layers_2 = nn.ModuleList(
|
| 1111 |
+
[
|
| 1112 |
+
nn.Sequential(
|
| 1113 |
+
Conv1d(config.hidden_size, config.conv_size),
|
| 1114 |
+
nn.LayerNorm(config.hidden_size, elementwise_affine=False),
|
| 1115 |
+
nn.Tanh(),
|
| 1116 |
+
)
|
| 1117 |
+
for i in range(int(config.n_parser_layers/2))
|
| 1118 |
+
]
|
| 1119 |
+
)
|
| 1120 |
+
|
| 1121 |
+
self.distance_ff_2 = nn.Sequential(
|
| 1122 |
+
Conv1d(config.hidden_size, 2),
|
| 1123 |
+
nn.LayerNorm(config.hidden_size, elementwise_affine=False),
|
| 1124 |
+
nn.Tanh(),
|
| 1125 |
+
nn.Linear(config.hidden_size, 1),
|
| 1126 |
+
)
|
| 1127 |
+
|
| 1128 |
+
self.height_ff_2 = nn.Sequential(
|
| 1129 |
+
nn.Linear(config.hidden_size, config.hidden_size),
|
| 1130 |
+
nn.LayerNorm(config.hidden_size, elementwise_affine=False),
|
| 1131 |
+
nn.Tanh(),
|
| 1132 |
+
nn.Linear(config.hidden_size, 1),
|
| 1133 |
+
)
|
| 1134 |
+
|
| 1135 |
+
n_rel = len(config.relations)
|
| 1136 |
+
self._rel_weight_2 = nn.Parameter(
|
| 1137 |
+
torch.zeros((config.num_hidden_layers, config.num_attention_heads, n_rel))
|
| 1138 |
+
)
|
| 1139 |
+
self._rel_weight_2.data.normal_(0, 0.1)
|
| 1140 |
+
|
| 1141 |
+
self._scaler_2 = nn.Parameter(torch.zeros(2))
|
| 1142 |
+
|
| 1143 |
+
else:
|
| 1144 |
+
self.parser_layers = nn.ModuleList(
|
| 1145 |
+
[
|
| 1146 |
+
nn.Sequential(
|
| 1147 |
+
Conv1d(config.hidden_size, config.conv_size),
|
| 1148 |
+
nn.LayerNorm(config.hidden_size, elementwise_affine=False),
|
| 1149 |
+
nn.Tanh(),
|
| 1150 |
+
)
|
| 1151 |
+
for i in range(config.n_parser_layers)
|
| 1152 |
+
]
|
| 1153 |
+
)
|
| 1154 |
+
|
| 1155 |
+
self.distance_ff = nn.Sequential(
|
| 1156 |
+
Conv1d(config.hidden_size, 2),
|
| 1157 |
+
nn.LayerNorm(config.hidden_size, elementwise_affine=False),
|
| 1158 |
+
nn.Tanh(),
|
| 1159 |
+
nn.Linear(config.hidden_size, 1),
|
| 1160 |
+
)
|
| 1161 |
+
|
| 1162 |
+
self.height_ff = nn.Sequential(
|
| 1163 |
+
nn.Linear(config.hidden_size, config.hidden_size),
|
| 1164 |
+
nn.LayerNorm(config.hidden_size, elementwise_affine=False),
|
| 1165 |
+
nn.Tanh(),
|
| 1166 |
+
nn.Linear(config.hidden_size, 1),
|
| 1167 |
+
)
|
| 1168 |
+
|
| 1169 |
+
n_rel = len(config.relations)
|
| 1170 |
+
self._rel_weight = nn.Parameter(
|
| 1171 |
+
torch.zeros((config.num_hidden_layers, config.num_attention_heads, n_rel))
|
| 1172 |
+
)
|
| 1173 |
+
self._rel_weight.data.normal_(0, 0.1)
|
| 1174 |
+
|
| 1175 |
+
self._scaler = nn.Parameter(torch.zeros(2))
|
| 1176 |
+
|
| 1177 |
+
self.roberta = RobertaModel(config, add_pooling_layer=False)
|
| 1178 |
+
|
| 1179 |
+
if config.n_cntxt_layers > 0:
|
| 1180 |
+
self.cntxt_layers.embeddings = self.roberta.embeddings
|
| 1181 |
+
if config.n_cntxt_layers_2 > 0:
|
| 1182 |
+
self.cntxt_layers_2.embeddings = self.roberta.embeddings
|
| 1183 |
+
|
| 1184 |
+
self.lm_head = RobertaLMHead(config)
|
| 1185 |
+
|
| 1186 |
+
self.pad = config.pad_token_id
|
| 1187 |
+
|
| 1188 |
+
# The LM head weights require special treatment only when they are tied with the word embeddings
|
| 1189 |
+
self.update_keys_to_ignore(config, ["lm_head.decoder.weight"])
|
| 1190 |
+
|
| 1191 |
+
# Initialize weights and apply final processing
|
| 1192 |
+
self.post_init()
|
| 1193 |
+
|
| 1194 |
+
def get_output_embeddings(self):
|
| 1195 |
+
return self.lm_head.decoder
|
| 1196 |
+
|
| 1197 |
+
def set_output_embeddings(self, new_embeddings):
|
| 1198 |
+
self.lm_head.decoder = new_embeddings
|
| 1199 |
+
|
| 1200 |
+
@property
|
| 1201 |
+
def scaler(self):
|
| 1202 |
+
return self._scaler.exp()
|
| 1203 |
+
|
| 1204 |
+
@property
|
| 1205 |
+
def scaler_1(self):
|
| 1206 |
+
return self._scaler_1.exp()
|
| 1207 |
+
|
| 1208 |
+
@property
|
| 1209 |
+
def scaler_2(self):
|
| 1210 |
+
return self._scaler_2.exp()
|
| 1211 |
+
|
| 1212 |
+
@property
|
| 1213 |
+
def rel_weight(self):
|
| 1214 |
+
if self.config.weight_act == "sigmoid":
|
| 1215 |
+
return torch.sigmoid(self._rel_weight)
|
| 1216 |
+
elif self.config.weight_act == "softmax":
|
| 1217 |
+
return torch.softmax(self._rel_weight, dim=-1)
|
| 1218 |
+
|
| 1219 |
+
@property
|
| 1220 |
+
def rel_weight_1(self):
|
| 1221 |
+
if self.config.weight_act == "sigmoid":
|
| 1222 |
+
return torch.sigmoid(self._rel_weight_1)
|
| 1223 |
+
elif self.config.weight_act == "softmax":
|
| 1224 |
+
return torch.softmax(self._rel_weight_1, dim=-1)
|
| 1225 |
+
|
| 1226 |
+
|
| 1227 |
+
@property
|
| 1228 |
+
def rel_weight_2(self):
|
| 1229 |
+
if self.config.weight_act == "sigmoid":
|
| 1230 |
+
return torch.sigmoid(self._rel_weight_2)
|
| 1231 |
+
elif self.config.weight_act == "softmax":
|
| 1232 |
+
return torch.softmax(self._rel_weight_2, dim=-1)
|
| 1233 |
+
|
| 1234 |
+
|
| 1235 |
+
def compute_block(self, distance, height, n_cntxt_layers=0):
|
| 1236 |
+
"""Compute constituents from distance and height."""
|
| 1237 |
+
|
| 1238 |
+
if n_cntxt_layers>0:
|
| 1239 |
+
if n_cntxt_layers == 1:
|
| 1240 |
+
beta_logits = (distance[:, None, :] - height[:, :, None]) * self.scaler_1[0]
|
| 1241 |
+
elif n_cntxt_layers == 2:
|
| 1242 |
+
beta_logits = (distance[:, None, :] - height[:, :, None]) * self.scaler_2[0]
|
| 1243 |
+
else:
|
| 1244 |
+
beta_logits = (distance[:, None, :] - height[:, :, None]) * self.scaler[0]
|
| 1245 |
+
|
| 1246 |
+
gamma = torch.sigmoid(-beta_logits)
|
| 1247 |
+
ones = torch.ones_like(gamma)
|
| 1248 |
+
|
| 1249 |
+
block_mask_left = cummin(
|
| 1250 |
+
gamma.tril(-1) + ones.triu(0), reverse=True, max_value=1
|
| 1251 |
+
)
|
| 1252 |
+
block_mask_left = block_mask_left - F.pad(
|
| 1253 |
+
block_mask_left[:, :, :-1], (1, 0), value=0
|
| 1254 |
+
)
|
| 1255 |
+
block_mask_left.tril_(0)
|
| 1256 |
+
|
| 1257 |
+
block_mask_right = cummin(
|
| 1258 |
+
gamma.triu(0) + ones.tril(-1), exclusive=True, max_value=1
|
| 1259 |
+
)
|
| 1260 |
+
block_mask_right = block_mask_right - F.pad(
|
| 1261 |
+
block_mask_right[:, :, 1:], (0, 1), value=0
|
| 1262 |
+
)
|
| 1263 |
+
block_mask_right.triu_(0)
|
| 1264 |
+
|
| 1265 |
+
block_p = block_mask_left[:, :, :, None] * block_mask_right[:, :, None, :]
|
| 1266 |
+
block = cumsum(block_mask_left).tril(0) + cumsum(
|
| 1267 |
+
block_mask_right, reverse=True
|
| 1268 |
+
).triu(1)
|
| 1269 |
+
|
| 1270 |
+
return block_p, block
|
| 1271 |
+
|
| 1272 |
+
def compute_head(self, height, n_cntxt_layers=0):
|
| 1273 |
+
"""Estimate head for each constituent."""
|
| 1274 |
+
|
| 1275 |
+
_, length = height.size()
|
| 1276 |
+
if n_cntxt_layers>0:
|
| 1277 |
+
if n_cntxt_layers == 1:
|
| 1278 |
+
head_logits = height * self.scaler_1[1]
|
| 1279 |
+
elif n_cntxt_layers == 2:
|
| 1280 |
+
head_logits = height * self.scaler_2[1]
|
| 1281 |
+
else:
|
| 1282 |
+
head_logits = height * self.scaler[1]
|
| 1283 |
+
index = torch.arange(length, device=height.device)
|
| 1284 |
+
|
| 1285 |
+
mask = (index[:, None, None] <= index[None, None, :]) * (
|
| 1286 |
+
index[None, None, :] <= index[None, :, None]
|
| 1287 |
+
)
|
| 1288 |
+
head_logits = head_logits[:, None, None, :].repeat(1, length, length, 1)
|
| 1289 |
+
head_logits.masked_fill_(~mask[None, :, :, :], -1e9)
|
| 1290 |
+
|
| 1291 |
+
head_p = torch.softmax(head_logits, dim=-1)
|
| 1292 |
+
|
| 1293 |
+
return head_p
|
| 1294 |
+
|
| 1295 |
+
def parse(self, x, embs=None, n_cntxt_layers=0):
|
| 1296 |
+
"""Parse input sentence.
|
| 1297 |
+
|
| 1298 |
+
Args:
|
| 1299 |
+
x: input tokens (required).
|
| 1300 |
+
pos: position for each token (optional).
|
| 1301 |
+
Returns:
|
| 1302 |
+
distance: syntactic distance
|
| 1303 |
+
height: syntactic height
|
| 1304 |
+
"""
|
| 1305 |
+
|
| 1306 |
+
mask = x != self.pad
|
| 1307 |
+
mask_shifted = F.pad(mask[:, 1:], (0, 1), value=0)
|
| 1308 |
+
|
| 1309 |
+
if embs is None:
|
| 1310 |
+
h = self.roberta.embeddings(x)
|
| 1311 |
+
else:
|
| 1312 |
+
h = embs
|
| 1313 |
+
|
| 1314 |
+
if n_cntxt_layers > 0:
|
| 1315 |
+
if n_cntxt_layers == 1:
|
| 1316 |
+
parser_layers = self.parser_layers_1
|
| 1317 |
+
height_ff = self.height_ff_1
|
| 1318 |
+
distance_ff = self.distance_ff_1
|
| 1319 |
+
elif n_cntxt_layers == 2:
|
| 1320 |
+
parser_layers = self.parser_layers_2
|
| 1321 |
+
height_ff = self.height_ff_2
|
| 1322 |
+
distance_ff = self.distance_ff_2
|
| 1323 |
+
for i in range(int(self.config.n_parser_layers/2)):
|
| 1324 |
+
h = h.masked_fill(~mask[:, :, None], 0)
|
| 1325 |
+
h = parser_layers[i](h)
|
| 1326 |
+
|
| 1327 |
+
height = height_ff(h).squeeze(-1)
|
| 1328 |
+
height.masked_fill_(~mask, -1e9)
|
| 1329 |
+
|
| 1330 |
+
distance = distance_ff(h).squeeze(-1)
|
| 1331 |
+
distance.masked_fill_(~mask_shifted, 1e9)
|
| 1332 |
+
|
| 1333 |
+
# Calbrating the distance and height to the same level
|
| 1334 |
+
length = distance.size(1)
|
| 1335 |
+
height_max = height[:, None, :].expand(-1, length, -1)
|
| 1336 |
+
height_max = torch.cummax(
|
| 1337 |
+
height_max.triu(0) - torch.ones_like(height_max).tril(-1) * 1e9, dim=-1
|
| 1338 |
+
)[0].triu(0)
|
| 1339 |
+
|
| 1340 |
+
margin_left = torch.relu(
|
| 1341 |
+
F.pad(distance[:, :-1, None], (0, 0, 1, 0), value=1e9) - height_max
|
| 1342 |
+
)
|
| 1343 |
+
margin_right = torch.relu(distance[:, None, :] - height_max)
|
| 1344 |
+
margin = torch.where(
|
| 1345 |
+
margin_left > margin_right, margin_right, margin_left
|
| 1346 |
+
).triu(0)
|
| 1347 |
+
|
| 1348 |
+
margin_mask = torch.stack([mask_shifted] + [mask] * (length - 1), dim=1)
|
| 1349 |
+
margin.masked_fill_(~margin_mask, 0)
|
| 1350 |
+
margin = margin.max()
|
| 1351 |
+
|
| 1352 |
+
distance = distance - margin
|
| 1353 |
+
else:
|
| 1354 |
+
for i in range(self.config.n_parser_layers):
|
| 1355 |
+
h = h.masked_fill(~mask[:, :, None], 0)
|
| 1356 |
+
h = self.parser_layers[i](h)
|
| 1357 |
+
|
| 1358 |
+
height = self.height_ff(h).squeeze(-1)
|
| 1359 |
+
height.masked_fill_(~mask, -1e9)
|
| 1360 |
+
|
| 1361 |
+
distance = self.distance_ff(h).squeeze(-1)
|
| 1362 |
+
distance.masked_fill_(~mask_shifted, 1e9)
|
| 1363 |
+
|
| 1364 |
+
# Calbrating the distance and height to the same level
|
| 1365 |
+
length = distance.size(1)
|
| 1366 |
+
height_max = height[:, None, :].expand(-1, length, -1)
|
| 1367 |
+
height_max = torch.cummax(
|
| 1368 |
+
height_max.triu(0) - torch.ones_like(height_max).tril(-1) * 1e9, dim=-1
|
| 1369 |
+
)[0].triu(0)
|
| 1370 |
+
|
| 1371 |
+
margin_left = torch.relu(
|
| 1372 |
+
F.pad(distance[:, :-1, None], (0, 0, 1, 0), value=1e9) - height_max
|
| 1373 |
+
)
|
| 1374 |
+
margin_right = torch.relu(distance[:, None, :] - height_max)
|
| 1375 |
+
margin = torch.where(
|
| 1376 |
+
margin_left > margin_right, margin_right, margin_left
|
| 1377 |
+
).triu(0)
|
| 1378 |
+
|
| 1379 |
+
margin_mask = torch.stack([mask_shifted] + [mask] * (length - 1), dim=1)
|
| 1380 |
+
margin.masked_fill_(~margin_mask, 0)
|
| 1381 |
+
margin = margin.max()
|
| 1382 |
+
|
| 1383 |
+
distance = distance - margin
|
| 1384 |
+
|
| 1385 |
+
return distance, height
|
| 1386 |
+
|
| 1387 |
+
def generate_mask(self, x, distance, height, n_cntxt_layers=0):
|
| 1388 |
+
"""Compute head and cibling distribution for each token."""
|
| 1389 |
+
|
| 1390 |
+
bsz, length = x.size()
|
| 1391 |
+
|
| 1392 |
+
eye = torch.eye(length, device=x.device, dtype=torch.bool)
|
| 1393 |
+
eye = eye[None, :, :].expand((bsz, -1, -1))
|
| 1394 |
+
|
| 1395 |
+
block_p, block = self.compute_block(distance, height, n_cntxt_layers=n_cntxt_layers)
|
| 1396 |
+
head_p = self.compute_head(height, n_cntxt_layers=n_cntxt_layers)
|
| 1397 |
+
head = torch.einsum("blij,bijh->blh", block_p, head_p)
|
| 1398 |
+
head = head.masked_fill(eye, 0)
|
| 1399 |
+
child = head.transpose(1, 2)
|
| 1400 |
+
cibling = torch.bmm(head, child).masked_fill(eye, 0)
|
| 1401 |
+
|
| 1402 |
+
rel_list = []
|
| 1403 |
+
if "head" in self.config.relations:
|
| 1404 |
+
rel_list.append(head)
|
| 1405 |
+
if "child" in self.config.relations:
|
| 1406 |
+
rel_list.append(child)
|
| 1407 |
+
if "cibling" in self.config.relations:
|
| 1408 |
+
rel_list.append(cibling)
|
| 1409 |
+
|
| 1410 |
+
rel = torch.stack(rel_list, dim=1)
|
| 1411 |
+
|
| 1412 |
+
if n_cntxt_layers > 0:
|
| 1413 |
+
if n_cntxt_layers == 1:
|
| 1414 |
+
rel_weight = self.rel_weight_1
|
| 1415 |
+
elif n_cntxt_layers == 2:
|
| 1416 |
+
rel_weight = self.rel_weight_2
|
| 1417 |
+
else:
|
| 1418 |
+
rel_weight = self.rel_weight
|
| 1419 |
+
|
| 1420 |
+
dep = torch.einsum("lhr,brij->lbhij", rel_weight, rel)
|
| 1421 |
+
|
| 1422 |
+
if n_cntxt_layers == 1:
|
| 1423 |
+
num_layers = self.cntxt_layers_2.config.num_hidden_layers
|
| 1424 |
+
else:
|
| 1425 |
+
num_layers = self.roberta.config.num_hidden_layers
|
| 1426 |
+
|
| 1427 |
+
att_mask = dep.reshape(
|
| 1428 |
+
num_layers,
|
| 1429 |
+
bsz,
|
| 1430 |
+
self.config.num_attention_heads,
|
| 1431 |
+
length,
|
| 1432 |
+
length,
|
| 1433 |
+
)
|
| 1434 |
+
|
| 1435 |
+
return att_mask, cibling, head, block
|
| 1436 |
+
|
| 1437 |
+
def forward(
|
| 1438 |
+
self,
|
| 1439 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 1440 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 1441 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
| 1442 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1443 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 1444 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1445 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
| 1446 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 1447 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1448 |
+
output_attentions: Optional[bool] = None,
|
| 1449 |
+
output_hidden_states: Optional[bool] = None,
|
| 1450 |
+
return_dict: Optional[bool] = None,
|
| 1451 |
+
) -> Union[Tuple, MaskedLMOutput]:
|
| 1452 |
+
r"""
|
| 1453 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1454 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
| 1455 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
|
| 1456 |
+
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
| 1457 |
+
kwargs (`Dict[str, any]`, optional, defaults to *{}*):
|
| 1458 |
+
Used to hide legacy arguments that have been deprecated.
|
| 1459 |
+
"""
|
| 1460 |
+
return_dict = (
|
| 1461 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
| 1462 |
+
)
|
| 1463 |
+
|
| 1464 |
+
|
| 1465 |
+
if self.config.n_cntxt_layers > 0:
|
| 1466 |
+
cntxt_outputs = self.cntxt_layers(
|
| 1467 |
+
input_ids,
|
| 1468 |
+
attention_mask=attention_mask,
|
| 1469 |
+
token_type_ids=token_type_ids,
|
| 1470 |
+
position_ids=position_ids,
|
| 1471 |
+
head_mask=head_mask,
|
| 1472 |
+
inputs_embeds=inputs_embeds,
|
| 1473 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 1474 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 1475 |
+
output_attentions=output_attentions,
|
| 1476 |
+
output_hidden_states=output_hidden_states,
|
| 1477 |
+
return_dict=return_dict)
|
| 1478 |
+
|
| 1479 |
+
|
| 1480 |
+
if self.config.n_cntxt_layers_2 > 0:
|
| 1481 |
+
distance_1, height_1 = self.parse(input_ids, cntxt_outputs[0], n_cntxt_layers=1)
|
| 1482 |
+
att_mask_1, _, _, _ = self.generate_mask(input_ids, distance_1, height_1, n_cntxt_layers=1)
|
| 1483 |
+
|
| 1484 |
+
cntxt_outputs_2 = self.cntxt_layers_2(
|
| 1485 |
+
input_ids,
|
| 1486 |
+
attention_mask=attention_mask,
|
| 1487 |
+
token_type_ids=token_type_ids,
|
| 1488 |
+
position_ids=position_ids,
|
| 1489 |
+
head_mask=head_mask,
|
| 1490 |
+
inputs_embeds=inputs_embeds,
|
| 1491 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 1492 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 1493 |
+
output_attentions=output_attentions,
|
| 1494 |
+
output_hidden_states=output_hidden_states,
|
| 1495 |
+
return_dict=return_dict,
|
| 1496 |
+
parser_att_mask=att_mask_1)
|
| 1497 |
+
|
| 1498 |
+
sequence_output = cntxt_outputs_2[0]
|
| 1499 |
+
|
| 1500 |
+
distance_2, height_2 = self.parse(input_ids, sequence_output[0], n_cntxt_layers=2)
|
| 1501 |
+
att_mask, _, _, _ = self.generate_mask(input_ids, distance_2, height_2, n_cntxt_layers=2)
|
| 1502 |
+
|
| 1503 |
+
elif self.config.n_cntxt_layers > 0:
|
| 1504 |
+
distance, height = self.parse(input_ids, cntxt_outputs[0])
|
| 1505 |
+
att_mask, _, _, _ = self.generate_mask(input_ids, distance, height)
|
| 1506 |
+
else:
|
| 1507 |
+
distance, height = self.parse(input_ids)
|
| 1508 |
+
att_mask, _, _, _ = self.generate_mask(input_ids, distance, height)
|
| 1509 |
+
|
| 1510 |
+
outputs = self.roberta(
|
| 1511 |
+
input_ids,
|
| 1512 |
+
attention_mask=attention_mask,
|
| 1513 |
+
token_type_ids=token_type_ids,
|
| 1514 |
+
position_ids=position_ids,
|
| 1515 |
+
head_mask=head_mask,
|
| 1516 |
+
inputs_embeds=inputs_embeds,
|
| 1517 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 1518 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 1519 |
+
output_attentions=output_attentions,
|
| 1520 |
+
output_hidden_states=output_hidden_states,
|
| 1521 |
+
return_dict=return_dict,
|
| 1522 |
+
parser_att_mask=att_mask,
|
| 1523 |
+
)
|
| 1524 |
+
sequence_output = outputs[0]
|
| 1525 |
+
prediction_scores = self.lm_head(sequence_output)
|
| 1526 |
+
|
| 1527 |
+
masked_lm_loss = None
|
| 1528 |
+
if labels is not None:
|
| 1529 |
+
loss_fct = CrossEntropyLoss()
|
| 1530 |
+
masked_lm_loss = loss_fct(
|
| 1531 |
+
prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)
|
| 1532 |
+
)
|
| 1533 |
+
|
| 1534 |
+
if not return_dict:
|
| 1535 |
+
output = (prediction_scores,) + outputs[2:]
|
| 1536 |
+
return (
|
| 1537 |
+
((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
| 1538 |
+
)
|
| 1539 |
+
|
| 1540 |
+
return MaskedLMOutput(
|
| 1541 |
+
loss=masked_lm_loss,
|
| 1542 |
+
logits=prediction_scores,
|
| 1543 |
+
hidden_states=outputs.hidden_states,
|
| 1544 |
+
attentions=outputs.attentions,
|
| 1545 |
+
)
|
| 1546 |
+
|
| 1547 |
+
|
| 1548 |
+
class RobertaLMHead(nn.Module):
|
| 1549 |
+
"""Roberta Head for masked language modeling."""
|
| 1550 |
+
|
| 1551 |
+
def __init__(self, config):
|
| 1552 |
+
super().__init__()
|
| 1553 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
| 1554 |
+
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 1555 |
+
|
| 1556 |
+
self.decoder = nn.Linear(config.hidden_size, config.vocab_size)
|
| 1557 |
+
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
| 1558 |
+
self.decoder.bias = self.bias
|
| 1559 |
+
|
| 1560 |
+
def forward(self, features, **kwargs):
|
| 1561 |
+
x = self.dense(features)
|
| 1562 |
+
x = gelu(x)
|
| 1563 |
+
x = self.layer_norm(x)
|
| 1564 |
+
|
| 1565 |
+
# project back to size of vocabulary with bias
|
| 1566 |
+
x = self.decoder(x)
|
| 1567 |
+
|
| 1568 |
+
return x
|
| 1569 |
+
|
| 1570 |
+
def _tie_weights(self):
|
| 1571 |
+
# To tie those two weights if they get disconnected (on TPU or when the bias is resized)
|
| 1572 |
+
self.bias = self.decoder.bias
|
| 1573 |
+
|
| 1574 |
+
|
| 1575 |
+
class StructRobertaForSequenceClassification(RobertaPreTrainedModel):
|
| 1576 |
+
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
| 1577 |
+
|
| 1578 |
+
def __init__(self, config):
|
| 1579 |
+
super().__init__(config)
|
| 1580 |
+
self.num_labels = config.num_labels
|
| 1581 |
+
self.config = config
|
| 1582 |
+
|
| 1583 |
+
if config.n_cntxt_layers > 0:
|
| 1584 |
+
config_cntxt = copy.deepcopy(config)
|
| 1585 |
+
config_cntxt.num_hidden_layers = config.n_cntxt_layers
|
| 1586 |
+
|
| 1587 |
+
self.cntxt_layers = RobertaModel(config_cntxt, add_pooling_layer=False)
|
| 1588 |
+
|
| 1589 |
+
if config.n_cntxt_layers_2 > 0:
|
| 1590 |
+
self.parser_layers_1 = nn.ModuleList(
|
| 1591 |
+
[
|
| 1592 |
+
nn.Sequential(
|
| 1593 |
+
Conv1d(config.hidden_size, config.conv_size),
|
| 1594 |
+
nn.LayerNorm(config.hidden_size, elementwise_affine=False),
|
| 1595 |
+
nn.Tanh(),
|
| 1596 |
+
)
|
| 1597 |
+
for i in range(int(config.n_parser_layers/2))
|
| 1598 |
+
]
|
| 1599 |
+
)
|
| 1600 |
+
|
| 1601 |
+
self.distance_ff_1 = nn.Sequential(
|
| 1602 |
+
Conv1d(config.hidden_size, 2),
|
| 1603 |
+
nn.LayerNorm(config.hidden_size, elementwise_affine=False),
|
| 1604 |
+
nn.Tanh(),
|
| 1605 |
+
nn.Linear(config.hidden_size, 1),
|
| 1606 |
+
)
|
| 1607 |
+
|
| 1608 |
+
self.height_ff_1 = nn.Sequential(
|
| 1609 |
+
nn.Linear(config.hidden_size, config.hidden_size),
|
| 1610 |
+
nn.LayerNorm(config.hidden_size, elementwise_affine=False),
|
| 1611 |
+
nn.Tanh(),
|
| 1612 |
+
nn.Linear(config.hidden_size, 1),
|
| 1613 |
+
)
|
| 1614 |
+
|
| 1615 |
+
n_rel = len(config.relations)
|
| 1616 |
+
self._rel_weight_1 = nn.Parameter(
|
| 1617 |
+
torch.zeros((config.n_cntxt_layers_2, config.num_attention_heads, n_rel))
|
| 1618 |
+
)
|
| 1619 |
+
self._rel_weight_1.data.normal_(0, 0.1)
|
| 1620 |
+
|
| 1621 |
+
self._scaler_1 = nn.Parameter(torch.zeros(2))
|
| 1622 |
+
|
| 1623 |
+
config_cntxt_2 = copy.deepcopy(config)
|
| 1624 |
+
config_cntxt_2.num_hidden_layers = config.n_cntxt_layers_2
|
| 1625 |
+
|
| 1626 |
+
self.cntxt_layers_2 = RobertaModel(config_cntxt_2, add_pooling_layer=False)
|
| 1627 |
+
|
| 1628 |
+
|
| 1629 |
+
self.parser_layers_2 = nn.ModuleList(
|
| 1630 |
+
[
|
| 1631 |
+
nn.Sequential(
|
| 1632 |
+
Conv1d(config.hidden_size, config.conv_size),
|
| 1633 |
+
nn.LayerNorm(config.hidden_size, elementwise_affine=False),
|
| 1634 |
+
nn.Tanh(),
|
| 1635 |
+
)
|
| 1636 |
+
for i in range(int(config.n_parser_layers/2))
|
| 1637 |
+
]
|
| 1638 |
+
)
|
| 1639 |
+
|
| 1640 |
+
self.distance_ff_2 = nn.Sequential(
|
| 1641 |
+
Conv1d(config.hidden_size, 2),
|
| 1642 |
+
nn.LayerNorm(config.hidden_size, elementwise_affine=False),
|
| 1643 |
+
nn.Tanh(),
|
| 1644 |
+
nn.Linear(config.hidden_size, 1),
|
| 1645 |
+
)
|
| 1646 |
+
|
| 1647 |
+
self.height_ff_2 = nn.Sequential(
|
| 1648 |
+
nn.Linear(config.hidden_size, config.hidden_size),
|
| 1649 |
+
nn.LayerNorm(config.hidden_size, elementwise_affine=False),
|
| 1650 |
+
nn.Tanh(),
|
| 1651 |
+
nn.Linear(config.hidden_size, 1),
|
| 1652 |
+
)
|
| 1653 |
+
|
| 1654 |
+
n_rel = len(config.relations)
|
| 1655 |
+
self._rel_weight_2 = nn.Parameter(
|
| 1656 |
+
torch.zeros((config.num_hidden_layers, config.num_attention_heads, n_rel))
|
| 1657 |
+
)
|
| 1658 |
+
self._rel_weight_2.data.normal_(0, 0.1)
|
| 1659 |
+
|
| 1660 |
+
self._scaler_2 = nn.Parameter(torch.zeros(2))
|
| 1661 |
+
|
| 1662 |
+
else:
|
| 1663 |
+
self.parser_layers = nn.ModuleList(
|
| 1664 |
+
[
|
| 1665 |
+
nn.Sequential(
|
| 1666 |
+
Conv1d(config.hidden_size, config.conv_size),
|
| 1667 |
+
nn.LayerNorm(config.hidden_size, elementwise_affine=False),
|
| 1668 |
+
nn.Tanh(),
|
| 1669 |
+
)
|
| 1670 |
+
for i in range(config.n_parser_layers)
|
| 1671 |
+
]
|
| 1672 |
+
)
|
| 1673 |
+
|
| 1674 |
+
self.distance_ff = nn.Sequential(
|
| 1675 |
+
Conv1d(config.hidden_size, 2),
|
| 1676 |
+
nn.LayerNorm(config.hidden_size, elementwise_affine=False),
|
| 1677 |
+
nn.Tanh(),
|
| 1678 |
+
nn.Linear(config.hidden_size, 1),
|
| 1679 |
+
)
|
| 1680 |
+
|
| 1681 |
+
self.height_ff = nn.Sequential(
|
| 1682 |
+
nn.Linear(config.hidden_size, config.hidden_size),
|
| 1683 |
+
nn.LayerNorm(config.hidden_size, elementwise_affine=False),
|
| 1684 |
+
nn.Tanh(),
|
| 1685 |
+
nn.Linear(config.hidden_size, 1),
|
| 1686 |
+
)
|
| 1687 |
+
|
| 1688 |
+
n_rel = len(config.relations)
|
| 1689 |
+
self._rel_weight = nn.Parameter(
|
| 1690 |
+
torch.zeros((config.num_hidden_layers, config.num_attention_heads, n_rel))
|
| 1691 |
+
)
|
| 1692 |
+
self._rel_weight.data.normal_(0, 0.1)
|
| 1693 |
+
|
| 1694 |
+
self._scaler = nn.Parameter(torch.zeros(2))
|
| 1695 |
+
|
| 1696 |
+
self.roberta = RobertaModel(config, add_pooling_layer=False)
|
| 1697 |
+
|
| 1698 |
+
if config.n_cntxt_layers > 0:
|
| 1699 |
+
self.cntxt_layers.embeddings = self.roberta.embeddings
|
| 1700 |
+
if config.n_cntxt_layers_2 > 0:
|
| 1701 |
+
self.cntxt_layers_2.embeddings = self.roberta.embeddings
|
| 1702 |
+
|
| 1703 |
+
|
| 1704 |
+
self.pad = config.pad_token_id
|
| 1705 |
+
self.classifier = RobertaClassificationHead(config)
|
| 1706 |
+
|
| 1707 |
+
# Initialize weights and apply final processing
|
| 1708 |
+
self.post_init()
|
| 1709 |
+
|
| 1710 |
+
|
| 1711 |
+
@property
|
| 1712 |
+
def scaler(self):
|
| 1713 |
+
return self._scaler.exp()
|
| 1714 |
+
|
| 1715 |
+
@property
|
| 1716 |
+
def scaler_1(self):
|
| 1717 |
+
return self._scaler_1.exp()
|
| 1718 |
+
|
| 1719 |
+
@property
|
| 1720 |
+
def scaler_2(self):
|
| 1721 |
+
return self._scaler_2.exp()
|
| 1722 |
+
|
| 1723 |
+
@property
|
| 1724 |
+
def rel_weight(self):
|
| 1725 |
+
if self.config.weight_act == "sigmoid":
|
| 1726 |
+
return torch.sigmoid(self._rel_weight)
|
| 1727 |
+
elif self.config.weight_act == "softmax":
|
| 1728 |
+
return torch.softmax(self._rel_weight, dim=-1)
|
| 1729 |
+
|
| 1730 |
+
@property
|
| 1731 |
+
def rel_weight_1(self):
|
| 1732 |
+
if self.config.weight_act == "sigmoid":
|
| 1733 |
+
return torch.sigmoid(self._rel_weight_1)
|
| 1734 |
+
elif self.config.weight_act == "softmax":
|
| 1735 |
+
return torch.softmax(self._rel_weight_1, dim=-1)
|
| 1736 |
+
|
| 1737 |
+
|
| 1738 |
+
@property
|
| 1739 |
+
def rel_weight_2(self):
|
| 1740 |
+
if self.config.weight_act == "sigmoid":
|
| 1741 |
+
return torch.sigmoid(self._rel_weight_2)
|
| 1742 |
+
elif self.config.weight_act == "softmax":
|
| 1743 |
+
return torch.softmax(self._rel_weight_2, dim=-1)
|
| 1744 |
+
|
| 1745 |
+
|
| 1746 |
+
def compute_block(self, distance, height, n_cntxt_layers=0):
|
| 1747 |
+
"""Compute constituents from distance and height."""
|
| 1748 |
+
|
| 1749 |
+
if n_cntxt_layers>0:
|
| 1750 |
+
if n_cntxt_layers == 1:
|
| 1751 |
+
beta_logits = (distance[:, None, :] - height[:, :, None]) * self.scaler_1[0]
|
| 1752 |
+
elif n_cntxt_layers == 2:
|
| 1753 |
+
beta_logits = (distance[:, None, :] - height[:, :, None]) * self.scaler_2[0]
|
| 1754 |
+
else:
|
| 1755 |
+
beta_logits = (distance[:, None, :] - height[:, :, None]) * self.scaler[0]
|
| 1756 |
+
|
| 1757 |
+
gamma = torch.sigmoid(-beta_logits)
|
| 1758 |
+
ones = torch.ones_like(gamma)
|
| 1759 |
+
|
| 1760 |
+
block_mask_left = cummin(
|
| 1761 |
+
gamma.tril(-1) + ones.triu(0), reverse=True, max_value=1
|
| 1762 |
+
)
|
| 1763 |
+
block_mask_left = block_mask_left - F.pad(
|
| 1764 |
+
block_mask_left[:, :, :-1], (1, 0), value=0
|
| 1765 |
+
)
|
| 1766 |
+
block_mask_left.tril_(0)
|
| 1767 |
+
|
| 1768 |
+
block_mask_right = cummin(
|
| 1769 |
+
gamma.triu(0) + ones.tril(-1), exclusive=True, max_value=1
|
| 1770 |
+
)
|
| 1771 |
+
block_mask_right = block_mask_right - F.pad(
|
| 1772 |
+
block_mask_right[:, :, 1:], (0, 1), value=0
|
| 1773 |
+
)
|
| 1774 |
+
block_mask_right.triu_(0)
|
| 1775 |
+
|
| 1776 |
+
block_p = block_mask_left[:, :, :, None] * block_mask_right[:, :, None, :]
|
| 1777 |
+
block = cumsum(block_mask_left).tril(0) + cumsum(
|
| 1778 |
+
block_mask_right, reverse=True
|
| 1779 |
+
).triu(1)
|
| 1780 |
+
|
| 1781 |
+
return block_p, block
|
| 1782 |
+
|
| 1783 |
+
def compute_head(self, height, n_cntxt_layers=0):
|
| 1784 |
+
"""Estimate head for each constituent."""
|
| 1785 |
+
|
| 1786 |
+
_, length = height.size()
|
| 1787 |
+
if n_cntxt_layers>0:
|
| 1788 |
+
if n_cntxt_layers == 1:
|
| 1789 |
+
head_logits = height * self.scaler_1[1]
|
| 1790 |
+
elif n_cntxt_layers == 2:
|
| 1791 |
+
head_logits = height * self.scaler_2[1]
|
| 1792 |
+
else:
|
| 1793 |
+
head_logits = height * self.scaler[1]
|
| 1794 |
+
index = torch.arange(length, device=height.device)
|
| 1795 |
+
|
| 1796 |
+
mask = (index[:, None, None] <= index[None, None, :]) * (
|
| 1797 |
+
index[None, None, :] <= index[None, :, None]
|
| 1798 |
+
)
|
| 1799 |
+
head_logits = head_logits[:, None, None, :].repeat(1, length, length, 1)
|
| 1800 |
+
head_logits.masked_fill_(~mask[None, :, :, :], -1e9)
|
| 1801 |
+
|
| 1802 |
+
head_p = torch.softmax(head_logits, dim=-1)
|
| 1803 |
+
|
| 1804 |
+
return head_p
|
| 1805 |
+
|
| 1806 |
+
def parse(self, x, embs=None, n_cntxt_layers=0):
|
| 1807 |
+
"""Parse input sentence.
|
| 1808 |
+
|
| 1809 |
+
Args:
|
| 1810 |
+
x: input tokens (required).
|
| 1811 |
+
pos: position for each token (optional).
|
| 1812 |
+
Returns:
|
| 1813 |
+
distance: syntactic distance
|
| 1814 |
+
height: syntactic height
|
| 1815 |
+
"""
|
| 1816 |
+
|
| 1817 |
+
mask = x != self.pad
|
| 1818 |
+
mask_shifted = F.pad(mask[:, 1:], (0, 1), value=0)
|
| 1819 |
+
|
| 1820 |
+
if embs is None:
|
| 1821 |
+
h = self.roberta.embeddings(x)
|
| 1822 |
+
else:
|
| 1823 |
+
h = embs
|
| 1824 |
+
|
| 1825 |
+
if n_cntxt_layers > 0:
|
| 1826 |
+
if n_cntxt_layers == 1:
|
| 1827 |
+
parser_layers = self.parser_layers_1
|
| 1828 |
+
height_ff = self.height_ff_1
|
| 1829 |
+
distance_ff = self.distance_ff_1
|
| 1830 |
+
elif n_cntxt_layers == 2:
|
| 1831 |
+
parser_layers = self.parser_layers_2
|
| 1832 |
+
height_ff = self.height_ff_2
|
| 1833 |
+
distance_ff = self.distance_ff_2
|
| 1834 |
+
for i in range(int(self.config.n_parser_layers/2)):
|
| 1835 |
+
h = h.masked_fill(~mask[:, :, None], 0)
|
| 1836 |
+
h = parser_layers[i](h)
|
| 1837 |
+
|
| 1838 |
+
height = height_ff(h).squeeze(-1)
|
| 1839 |
+
height.masked_fill_(~mask, -1e9)
|
| 1840 |
+
|
| 1841 |
+
distance = distance_ff(h).squeeze(-1)
|
| 1842 |
+
distance.masked_fill_(~mask_shifted, 1e9)
|
| 1843 |
+
|
| 1844 |
+
# Calbrating the distance and height to the same level
|
| 1845 |
+
length = distance.size(1)
|
| 1846 |
+
height_max = height[:, None, :].expand(-1, length, -1)
|
| 1847 |
+
height_max = torch.cummax(
|
| 1848 |
+
height_max.triu(0) - torch.ones_like(height_max).tril(-1) * 1e9, dim=-1
|
| 1849 |
+
)[0].triu(0)
|
| 1850 |
+
|
| 1851 |
+
margin_left = torch.relu(
|
| 1852 |
+
F.pad(distance[:, :-1, None], (0, 0, 1, 0), value=1e9) - height_max
|
| 1853 |
+
)
|
| 1854 |
+
margin_right = torch.relu(distance[:, None, :] - height_max)
|
| 1855 |
+
margin = torch.where(
|
| 1856 |
+
margin_left > margin_right, margin_right, margin_left
|
| 1857 |
+
).triu(0)
|
| 1858 |
+
|
| 1859 |
+
margin_mask = torch.stack([mask_shifted] + [mask] * (length - 1), dim=1)
|
| 1860 |
+
margin.masked_fill_(~margin_mask, 0)
|
| 1861 |
+
margin = margin.max()
|
| 1862 |
+
|
| 1863 |
+
distance = distance - margin
|
| 1864 |
+
else:
|
| 1865 |
+
for i in range(self.config.n_parser_layers):
|
| 1866 |
+
h = h.masked_fill(~mask[:, :, None], 0)
|
| 1867 |
+
h = self.parser_layers[i](h)
|
| 1868 |
+
|
| 1869 |
+
height = self.height_ff(h).squeeze(-1)
|
| 1870 |
+
height.masked_fill_(~mask, -1e9)
|
| 1871 |
+
|
| 1872 |
+
distance = self.distance_ff(h).squeeze(-1)
|
| 1873 |
+
distance.masked_fill_(~mask_shifted, 1e9)
|
| 1874 |
+
|
| 1875 |
+
# Calbrating the distance and height to the same level
|
| 1876 |
+
length = distance.size(1)
|
| 1877 |
+
height_max = height[:, None, :].expand(-1, length, -1)
|
| 1878 |
+
height_max = torch.cummax(
|
| 1879 |
+
height_max.triu(0) - torch.ones_like(height_max).tril(-1) * 1e9, dim=-1
|
| 1880 |
+
)[0].triu(0)
|
| 1881 |
+
|
| 1882 |
+
margin_left = torch.relu(
|
| 1883 |
+
F.pad(distance[:, :-1, None], (0, 0, 1, 0), value=1e9) - height_max
|
| 1884 |
+
)
|
| 1885 |
+
margin_right = torch.relu(distance[:, None, :] - height_max)
|
| 1886 |
+
margin = torch.where(
|
| 1887 |
+
margin_left > margin_right, margin_right, margin_left
|
| 1888 |
+
).triu(0)
|
| 1889 |
+
|
| 1890 |
+
margin_mask = torch.stack([mask_shifted] + [mask] * (length - 1), dim=1)
|
| 1891 |
+
margin.masked_fill_(~margin_mask, 0)
|
| 1892 |
+
margin = margin.max()
|
| 1893 |
+
|
| 1894 |
+
distance = distance - margin
|
| 1895 |
+
|
| 1896 |
+
return distance, height
|
| 1897 |
+
|
| 1898 |
+
def generate_mask(self, x, distance, height, n_cntxt_layers=0):
|
| 1899 |
+
"""Compute head and cibling distribution for each token."""
|
| 1900 |
+
|
| 1901 |
+
bsz, length = x.size()
|
| 1902 |
+
|
| 1903 |
+
eye = torch.eye(length, device=x.device, dtype=torch.bool)
|
| 1904 |
+
eye = eye[None, :, :].expand((bsz, -1, -1))
|
| 1905 |
+
|
| 1906 |
+
block_p, block = self.compute_block(distance, height, n_cntxt_layers=n_cntxt_layers)
|
| 1907 |
+
head_p = self.compute_head(height, n_cntxt_layers=n_cntxt_layers)
|
| 1908 |
+
head = torch.einsum("blij,bijh->blh", block_p, head_p)
|
| 1909 |
+
head = head.masked_fill(eye, 0)
|
| 1910 |
+
child = head.transpose(1, 2)
|
| 1911 |
+
cibling = torch.bmm(head, child).masked_fill(eye, 0)
|
| 1912 |
+
|
| 1913 |
+
rel_list = []
|
| 1914 |
+
if "head" in self.config.relations:
|
| 1915 |
+
rel_list.append(head)
|
| 1916 |
+
if "child" in self.config.relations:
|
| 1917 |
+
rel_list.append(child)
|
| 1918 |
+
if "cibling" in self.config.relations:
|
| 1919 |
+
rel_list.append(cibling)
|
| 1920 |
+
|
| 1921 |
+
rel = torch.stack(rel_list, dim=1)
|
| 1922 |
+
|
| 1923 |
+
if n_cntxt_layers > 0:
|
| 1924 |
+
if n_cntxt_layers == 1:
|
| 1925 |
+
rel_weight = self.rel_weight_1
|
| 1926 |
+
elif n_cntxt_layers == 2:
|
| 1927 |
+
rel_weight = self.rel_weight_2
|
| 1928 |
+
else:
|
| 1929 |
+
rel_weight = self.rel_weight
|
| 1930 |
+
|
| 1931 |
+
dep = torch.einsum("lhr,brij->lbhij", rel_weight, rel)
|
| 1932 |
+
|
| 1933 |
+
if n_cntxt_layers == 1:
|
| 1934 |
+
num_layers = self.cntxt_layers_2.config.num_hidden_layers
|
| 1935 |
+
else:
|
| 1936 |
+
num_layers = self.roberta.config.num_hidden_layers
|
| 1937 |
+
|
| 1938 |
+
att_mask = dep.reshape(
|
| 1939 |
+
num_layers,
|
| 1940 |
+
bsz,
|
| 1941 |
+
self.config.num_attention_heads,
|
| 1942 |
+
length,
|
| 1943 |
+
length,
|
| 1944 |
+
)
|
| 1945 |
+
|
| 1946 |
+
return att_mask, cibling, head, block
|
| 1947 |
+
|
| 1948 |
+
def forward(
|
| 1949 |
+
self,
|
| 1950 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 1951 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 1952 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
| 1953 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1954 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 1955 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1956 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1957 |
+
output_attentions: Optional[bool] = None,
|
| 1958 |
+
output_hidden_states: Optional[bool] = None,
|
| 1959 |
+
return_dict: Optional[bool] = None,
|
| 1960 |
+
) -> Union[Tuple, SequenceClassifierOutput]:
|
| 1961 |
+
r"""
|
| 1962 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1963 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
| 1964 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
| 1965 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 1966 |
+
"""
|
| 1967 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1968 |
+
|
| 1969 |
+
if self.config.n_cntxt_layers > 0:
|
| 1970 |
+
cntxt_outputs = self.cntxt_layers(
|
| 1971 |
+
input_ids,
|
| 1972 |
+
attention_mask=attention_mask,
|
| 1973 |
+
token_type_ids=token_type_ids,
|
| 1974 |
+
position_ids=position_ids,
|
| 1975 |
+
head_mask=head_mask,
|
| 1976 |
+
inputs_embeds=inputs_embeds,
|
| 1977 |
+
output_attentions=output_attentions,
|
| 1978 |
+
output_hidden_states=output_hidden_states,
|
| 1979 |
+
return_dict=return_dict)
|
| 1980 |
+
|
| 1981 |
+
|
| 1982 |
+
if self.config.n_cntxt_layers_2 > 0:
|
| 1983 |
+
distance_1, height_1 = self.parse(input_ids, cntxt_outputs[0], n_cntxt_layers=1)
|
| 1984 |
+
att_mask_1, _, _, _ = self.generate_mask(input_ids, distance_1, height_1, n_cntxt_layers=1)
|
| 1985 |
+
|
| 1986 |
+
cntxt_outputs_2 = self.cntxt_layers_2(
|
| 1987 |
+
input_ids,
|
| 1988 |
+
attention_mask=attention_mask,
|
| 1989 |
+
token_type_ids=token_type_ids,
|
| 1990 |
+
position_ids=position_ids,
|
| 1991 |
+
head_mask=head_mask,
|
| 1992 |
+
inputs_embeds=inputs_embeds,
|
| 1993 |
+
output_attentions=output_attentions,
|
| 1994 |
+
output_hidden_states=output_hidden_states,
|
| 1995 |
+
return_dict=return_dict,
|
| 1996 |
+
parser_att_mask=att_mask_1)
|
| 1997 |
+
|
| 1998 |
+
sequence_output = cntxt_outputs_2[0]
|
| 1999 |
+
|
| 2000 |
+
distance_2, height_2 = self.parse(input_ids, sequence_output[0], n_cntxt_layers=2)
|
| 2001 |
+
att_mask, _, _, _ = self.generate_mask(input_ids, distance_2, height_2, n_cntxt_layers=2)
|
| 2002 |
+
|
| 2003 |
+
elif self.config.n_cntxt_layers > 0:
|
| 2004 |
+
distance, height = self.parse(input_ids, cntxt_outputs[0])
|
| 2005 |
+
att_mask, _, _, _ = self.generate_mask(input_ids, distance, height)
|
| 2006 |
+
else:
|
| 2007 |
+
distance, height = self.parse(input_ids)
|
| 2008 |
+
att_mask, _, _, _ = self.generate_mask(input_ids, distance, height)
|
| 2009 |
+
|
| 2010 |
+
outputs = self.roberta(
|
| 2011 |
+
input_ids,
|
| 2012 |
+
attention_mask=attention_mask,
|
| 2013 |
+
token_type_ids=token_type_ids,
|
| 2014 |
+
position_ids=position_ids,
|
| 2015 |
+
head_mask=head_mask,
|
| 2016 |
+
inputs_embeds=inputs_embeds,
|
| 2017 |
+
output_attentions=output_attentions,
|
| 2018 |
+
output_hidden_states=output_hidden_states,
|
| 2019 |
+
return_dict=return_dict,
|
| 2020 |
+
parser_att_mask=att_mask,
|
| 2021 |
+
)
|
| 2022 |
+
sequence_output = outputs[0]
|
| 2023 |
+
logits = self.classifier(sequence_output)
|
| 2024 |
+
|
| 2025 |
+
loss = None
|
| 2026 |
+
if labels is not None:
|
| 2027 |
+
if self.config.problem_type is None:
|
| 2028 |
+
if self.num_labels == 1:
|
| 2029 |
+
self.config.problem_type = "regression"
|
| 2030 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
| 2031 |
+
self.config.problem_type = "single_label_classification"
|
| 2032 |
+
else:
|
| 2033 |
+
self.config.problem_type = "multi_label_classification"
|
| 2034 |
+
|
| 2035 |
+
if self.config.problem_type == "regression":
|
| 2036 |
+
loss_fct = MSELoss()
|
| 2037 |
+
if self.num_labels == 1:
|
| 2038 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
| 2039 |
+
else:
|
| 2040 |
+
loss = loss_fct(logits, labels)
|
| 2041 |
+
elif self.config.problem_type == "single_label_classification":
|
| 2042 |
+
loss_fct = CrossEntropyLoss()
|
| 2043 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
| 2044 |
+
elif self.config.problem_type == "multi_label_classification":
|
| 2045 |
+
loss_fct = BCEWithLogitsLoss()
|
| 2046 |
+
loss = loss_fct(logits, labels)
|
| 2047 |
+
|
| 2048 |
+
if not return_dict:
|
| 2049 |
+
output = (logits,) + outputs[2:]
|
| 2050 |
+
return ((loss,) + output) if loss is not None else output
|
| 2051 |
+
|
| 2052 |
+
return SequenceClassifierOutput(
|
| 2053 |
+
loss=loss,
|
| 2054 |
+
logits=logits,
|
| 2055 |
+
hidden_states=outputs.hidden_states,
|
| 2056 |
+
attentions=outputs.attentions,
|
| 2057 |
+
)
|
| 2058 |
+
|
| 2059 |
+
|
| 2060 |
+
class RobertaClassificationHead(nn.Module):
|
| 2061 |
+
"""Head for sentence-level classification tasks."""
|
| 2062 |
+
|
| 2063 |
+
def __init__(self, config):
|
| 2064 |
+
super().__init__()
|
| 2065 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
| 2066 |
+
classifier_dropout = (
|
| 2067 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
| 2068 |
+
)
|
| 2069 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
| 2070 |
+
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
|
| 2071 |
+
|
| 2072 |
+
def forward(self, features, **kwargs):
|
| 2073 |
+
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
|
| 2074 |
+
x = self.dropout(x)
|
| 2075 |
+
x = self.dense(x)
|
| 2076 |
+
x = torch.tanh(x)
|
| 2077 |
+
x = self.dropout(x)
|
| 2078 |
+
x = self.out_proj(x)
|
| 2079 |
+
return x
|
| 2080 |
+
|
| 2081 |
+
|
| 2082 |
+
def create_position_ids_from_input_ids(
|
| 2083 |
+
input_ids, padding_idx, past_key_values_length=0
|
| 2084 |
+
):
|
| 2085 |
+
"""
|
| 2086 |
+
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
|
| 2087 |
+
are ignored. This is modified from fairseq's `utils.make_positions`.
|
| 2088 |
+
|
| 2089 |
+
Args:
|
| 2090 |
+
x: torch.Tensor x:
|
| 2091 |
+
|
| 2092 |
+
Returns: torch.Tensor
|
| 2093 |
+
"""
|
| 2094 |
+
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
|
| 2095 |
+
mask = input_ids.ne(padding_idx).int()
|
| 2096 |
+
incremental_indices = (
|
| 2097 |
+
torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length
|
| 2098 |
+
) * mask
|
| 2099 |
+
return incremental_indices.long() + padding_idx
|
| 2100 |
+
|
| 2101 |
+
|
| 2102 |
+
def cumprod(x, reverse=False, exclusive=False):
|
| 2103 |
+
"""cumulative product."""
|
| 2104 |
+
if reverse:
|
| 2105 |
+
x = x.flip([-1])
|
| 2106 |
+
|
| 2107 |
+
if exclusive:
|
| 2108 |
+
x = F.pad(x[:, :, :-1], (1, 0), value=1)
|
| 2109 |
+
|
| 2110 |
+
cx = x.cumprod(-1)
|
| 2111 |
+
|
| 2112 |
+
if reverse:
|
| 2113 |
+
cx = cx.flip([-1])
|
| 2114 |
+
return cx
|
| 2115 |
+
|
| 2116 |
+
|
| 2117 |
+
def cumsum(x, reverse=False, exclusive=False):
|
| 2118 |
+
"""cumulative sum."""
|
| 2119 |
+
bsz, _, length = x.size()
|
| 2120 |
+
device = x.device
|
| 2121 |
+
if reverse:
|
| 2122 |
+
if exclusive:
|
| 2123 |
+
w = torch.ones([bsz, length, length], device=device).tril(-1)
|
| 2124 |
+
else:
|
| 2125 |
+
w = torch.ones([bsz, length, length], device=device).tril(0)
|
| 2126 |
+
cx = torch.bmm(x, w)
|
| 2127 |
+
else:
|
| 2128 |
+
if exclusive:
|
| 2129 |
+
w = torch.ones([bsz, length, length], device=device).triu(1)
|
| 2130 |
+
else:
|
| 2131 |
+
w = torch.ones([bsz, length, length], device=device).triu(0)
|
| 2132 |
+
cx = torch.bmm(x, w)
|
| 2133 |
+
return cx
|
| 2134 |
+
|
| 2135 |
+
|
| 2136 |
+
def cummin(x, reverse=False, exclusive=False, max_value=1e9):
|
| 2137 |
+
"""cumulative min."""
|
| 2138 |
+
if reverse:
|
| 2139 |
+
if exclusive:
|
| 2140 |
+
x = F.pad(x[:, :, 1:], (0, 1), value=max_value)
|
| 2141 |
+
x = x.flip([-1]).cummin(-1)[0].flip([-1])
|
| 2142 |
+
else:
|
| 2143 |
+
if exclusive:
|
| 2144 |
+
x = F.pad(x[:, :, :-1], (1, 0), value=max_value)
|
| 2145 |
+
x = x.cummin(-1)[0]
|
| 2146 |
+
return x
|
finetune/boolq/predict_results.txt
ADDED
|
@@ -0,0 +1,724 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
index prediction
|
| 2 |
+
0 1
|
| 3 |
+
1 1
|
| 4 |
+
2 1
|
| 5 |
+
3 0
|
| 6 |
+
4 1
|
| 7 |
+
5 1
|
| 8 |
+
6 1
|
| 9 |
+
7 0
|
| 10 |
+
8 1
|
| 11 |
+
9 0
|
| 12 |
+
10 0
|
| 13 |
+
11 1
|
| 14 |
+
12 0
|
| 15 |
+
13 1
|
| 16 |
+
14 1
|
| 17 |
+
15 1
|
| 18 |
+
16 1
|
| 19 |
+
17 0
|
| 20 |
+
18 1
|
| 21 |
+
19 1
|
| 22 |
+
20 0
|
| 23 |
+
21 1
|
| 24 |
+
22 1
|
| 25 |
+
23 1
|
| 26 |
+
24 0
|
| 27 |
+
25 1
|
| 28 |
+
26 0
|
| 29 |
+
27 1
|
| 30 |
+
28 0
|
| 31 |
+
29 1
|
| 32 |
+
30 0
|
| 33 |
+
31 1
|
| 34 |
+
32 0
|
| 35 |
+
33 1
|
| 36 |
+
34 0
|
| 37 |
+
35 1
|
| 38 |
+
36 0
|
| 39 |
+
37 1
|
| 40 |
+
38 1
|
| 41 |
+
39 1
|
| 42 |
+
40 0
|
| 43 |
+
41 0
|
| 44 |
+
42 1
|
| 45 |
+
43 1
|
| 46 |
+
44 0
|
| 47 |
+
45 1
|
| 48 |
+
46 1
|
| 49 |
+
47 1
|
| 50 |
+
48 1
|
| 51 |
+
49 1
|
| 52 |
+
50 1
|
| 53 |
+
51 1
|
| 54 |
+
52 1
|
| 55 |
+
53 0
|
| 56 |
+
54 1
|
| 57 |
+
55 1
|
| 58 |
+
56 1
|
| 59 |
+
57 0
|
| 60 |
+
58 0
|
| 61 |
+
59 0
|
| 62 |
+
60 1
|
| 63 |
+
61 1
|
| 64 |
+
62 1
|
| 65 |
+
63 0
|
| 66 |
+
64 0
|
| 67 |
+
65 1
|
| 68 |
+
66 1
|
| 69 |
+
67 1
|
| 70 |
+
68 1
|
| 71 |
+
69 1
|
| 72 |
+
70 1
|
| 73 |
+
71 0
|
| 74 |
+
72 1
|
| 75 |
+
73 1
|
| 76 |
+
74 0
|
| 77 |
+
75 0
|
| 78 |
+
76 0
|
| 79 |
+
77 0
|
| 80 |
+
78 1
|
| 81 |
+
79 1
|
| 82 |
+
80 1
|
| 83 |
+
81 1
|
| 84 |
+
82 0
|
| 85 |
+
83 1
|
| 86 |
+
84 1
|
| 87 |
+
85 1
|
| 88 |
+
86 1
|
| 89 |
+
87 1
|
| 90 |
+
88 1
|
| 91 |
+
89 0
|
| 92 |
+
90 1
|
| 93 |
+
91 1
|
| 94 |
+
92 0
|
| 95 |
+
93 1
|
| 96 |
+
94 0
|
| 97 |
+
95 1
|
| 98 |
+
96 1
|
| 99 |
+
97 1
|
| 100 |
+
98 0
|
| 101 |
+
99 1
|
| 102 |
+
100 1
|
| 103 |
+
101 0
|
| 104 |
+
102 1
|
| 105 |
+
103 0
|
| 106 |
+
104 1
|
| 107 |
+
105 1
|
| 108 |
+
106 0
|
| 109 |
+
107 0
|
| 110 |
+
108 1
|
| 111 |
+
109 1
|
| 112 |
+
110 1
|
| 113 |
+
111 1
|
| 114 |
+
112 0
|
| 115 |
+
113 1
|
| 116 |
+
114 1
|
| 117 |
+
115 1
|
| 118 |
+
116 1
|
| 119 |
+
117 1
|
| 120 |
+
118 1
|
| 121 |
+
119 1
|
| 122 |
+
120 1
|
| 123 |
+
121 1
|
| 124 |
+
122 1
|
| 125 |
+
123 0
|
| 126 |
+
124 1
|
| 127 |
+
125 1
|
| 128 |
+
126 0
|
| 129 |
+
127 0
|
| 130 |
+
128 1
|
| 131 |
+
129 0
|
| 132 |
+
130 0
|
| 133 |
+
131 1
|
| 134 |
+
132 0
|
| 135 |
+
133 0
|
| 136 |
+
134 1
|
| 137 |
+
135 1
|
| 138 |
+
136 1
|
| 139 |
+
137 0
|
| 140 |
+
138 1
|
| 141 |
+
139 0
|
| 142 |
+
140 1
|
| 143 |
+
141 1
|
| 144 |
+
142 1
|
| 145 |
+
143 1
|
| 146 |
+
144 1
|
| 147 |
+
145 0
|
| 148 |
+
146 1
|
| 149 |
+
147 0
|
| 150 |
+
148 1
|
| 151 |
+
149 0
|
| 152 |
+
150 0
|
| 153 |
+
151 1
|
| 154 |
+
152 0
|
| 155 |
+
153 1
|
| 156 |
+
154 1
|
| 157 |
+
155 0
|
| 158 |
+
156 0
|
| 159 |
+
157 1
|
| 160 |
+
158 0
|
| 161 |
+
159 1
|
| 162 |
+
160 1
|
| 163 |
+
161 1
|
| 164 |
+
162 1
|
| 165 |
+
163 1
|
| 166 |
+
164 0
|
| 167 |
+
165 1
|
| 168 |
+
166 1
|
| 169 |
+
167 1
|
| 170 |
+
168 0
|
| 171 |
+
169 0
|
| 172 |
+
170 1
|
| 173 |
+
171 1
|
| 174 |
+
172 0
|
| 175 |
+
173 0
|
| 176 |
+
174 1
|
| 177 |
+
175 1
|
| 178 |
+
176 1
|
| 179 |
+
177 1
|
| 180 |
+
178 0
|
| 181 |
+
179 1
|
| 182 |
+
180 1
|
| 183 |
+
181 0
|
| 184 |
+
182 1
|
| 185 |
+
183 1
|
| 186 |
+
184 0
|
| 187 |
+
185 1
|
| 188 |
+
186 0
|
| 189 |
+
187 0
|
| 190 |
+
188 1
|
| 191 |
+
189 1
|
| 192 |
+
190 1
|
| 193 |
+
191 0
|
| 194 |
+
192 1
|
| 195 |
+
193 0
|
| 196 |
+
194 0
|
| 197 |
+
195 0
|
| 198 |
+
196 1
|
| 199 |
+
197 0
|
| 200 |
+
198 0
|
| 201 |
+
199 1
|
| 202 |
+
200 1
|
| 203 |
+
201 1
|
| 204 |
+
202 1
|
| 205 |
+
203 0
|
| 206 |
+
204 1
|
| 207 |
+
205 1
|
| 208 |
+
206 1
|
| 209 |
+
207 0
|
| 210 |
+
208 1
|
| 211 |
+
209 1
|
| 212 |
+
210 1
|
| 213 |
+
211 1
|
| 214 |
+
212 1
|
| 215 |
+
213 0
|
| 216 |
+
214 1
|
| 217 |
+
215 0
|
| 218 |
+
216 1
|
| 219 |
+
217 1
|
| 220 |
+
218 1
|
| 221 |
+
219 1
|
| 222 |
+
220 1
|
| 223 |
+
221 1
|
| 224 |
+
222 1
|
| 225 |
+
223 0
|
| 226 |
+
224 0
|
| 227 |
+
225 0
|
| 228 |
+
226 1
|
| 229 |
+
227 1
|
| 230 |
+
228 0
|
| 231 |
+
229 1
|
| 232 |
+
230 0
|
| 233 |
+
231 0
|
| 234 |
+
232 0
|
| 235 |
+
233 0
|
| 236 |
+
234 1
|
| 237 |
+
235 1
|
| 238 |
+
236 0
|
| 239 |
+
237 0
|
| 240 |
+
238 1
|
| 241 |
+
239 1
|
| 242 |
+
240 0
|
| 243 |
+
241 1
|
| 244 |
+
242 1
|
| 245 |
+
243 1
|
| 246 |
+
244 0
|
| 247 |
+
245 1
|
| 248 |
+
246 1
|
| 249 |
+
247 1
|
| 250 |
+
248 1
|
| 251 |
+
249 1
|
| 252 |
+
250 0
|
| 253 |
+
251 0
|
| 254 |
+
252 1
|
| 255 |
+
253 1
|
| 256 |
+
254 1
|
| 257 |
+
255 1
|
| 258 |
+
256 1
|
| 259 |
+
257 1
|
| 260 |
+
258 1
|
| 261 |
+
259 0
|
| 262 |
+
260 1
|
| 263 |
+
261 0
|
| 264 |
+
262 1
|
| 265 |
+
263 1
|
| 266 |
+
264 0
|
| 267 |
+
265 1
|
| 268 |
+
266 1
|
| 269 |
+
267 0
|
| 270 |
+
268 1
|
| 271 |
+
269 1
|
| 272 |
+
270 1
|
| 273 |
+
271 1
|
| 274 |
+
272 1
|
| 275 |
+
273 1
|
| 276 |
+
274 1
|
| 277 |
+
275 1
|
| 278 |
+
276 1
|
| 279 |
+
277 1
|
| 280 |
+
278 1
|
| 281 |
+
279 1
|
| 282 |
+
280 1
|
| 283 |
+
281 1
|
| 284 |
+
282 0
|
| 285 |
+
283 0
|
| 286 |
+
284 0
|
| 287 |
+
285 0
|
| 288 |
+
286 0
|
| 289 |
+
287 0
|
| 290 |
+
288 1
|
| 291 |
+
289 0
|
| 292 |
+
290 1
|
| 293 |
+
291 0
|
| 294 |
+
292 1
|
| 295 |
+
293 1
|
| 296 |
+
294 1
|
| 297 |
+
295 1
|
| 298 |
+
296 1
|
| 299 |
+
297 0
|
| 300 |
+
298 1
|
| 301 |
+
299 1
|
| 302 |
+
300 1
|
| 303 |
+
301 0
|
| 304 |
+
302 1
|
| 305 |
+
303 0
|
| 306 |
+
304 1
|
| 307 |
+
305 0
|
| 308 |
+
306 0
|
| 309 |
+
307 0
|
| 310 |
+
308 0
|
| 311 |
+
309 1
|
| 312 |
+
310 0
|
| 313 |
+
311 1
|
| 314 |
+
312 1
|
| 315 |
+
313 0
|
| 316 |
+
314 1
|
| 317 |
+
315 1
|
| 318 |
+
316 1
|
| 319 |
+
317 1
|
| 320 |
+
318 1
|
| 321 |
+
319 0
|
| 322 |
+
320 1
|
| 323 |
+
321 1
|
| 324 |
+
322 1
|
| 325 |
+
323 1
|
| 326 |
+
324 0
|
| 327 |
+
325 0
|
| 328 |
+
326 1
|
| 329 |
+
327 0
|
| 330 |
+
328 1
|
| 331 |
+
329 1
|
| 332 |
+
330 1
|
| 333 |
+
331 1
|
| 334 |
+
332 1
|
| 335 |
+
333 1
|
| 336 |
+
334 0
|
| 337 |
+
335 0
|
| 338 |
+
336 0
|
| 339 |
+
337 1
|
| 340 |
+
338 1
|
| 341 |
+
339 1
|
| 342 |
+
340 1
|
| 343 |
+
341 0
|
| 344 |
+
342 1
|
| 345 |
+
343 0
|
| 346 |
+
344 0
|
| 347 |
+
345 1
|
| 348 |
+
346 1
|
| 349 |
+
347 0
|
| 350 |
+
348 1
|
| 351 |
+
349 1
|
| 352 |
+
350 1
|
| 353 |
+
351 0
|
| 354 |
+
352 1
|
| 355 |
+
353 1
|
| 356 |
+
354 1
|
| 357 |
+
355 0
|
| 358 |
+
356 0
|
| 359 |
+
357 1
|
| 360 |
+
358 0
|
| 361 |
+
359 1
|
| 362 |
+
360 1
|
| 363 |
+
361 1
|
| 364 |
+
362 1
|
| 365 |
+
363 1
|
| 366 |
+
364 0
|
| 367 |
+
365 1
|
| 368 |
+
366 0
|
| 369 |
+
367 1
|
| 370 |
+
368 1
|
| 371 |
+
369 1
|
| 372 |
+
370 1
|
| 373 |
+
371 1
|
| 374 |
+
372 1
|
| 375 |
+
373 1
|
| 376 |
+
374 1
|
| 377 |
+
375 1
|
| 378 |
+
376 1
|
| 379 |
+
377 1
|
| 380 |
+
378 0
|
| 381 |
+
379 0
|
| 382 |
+
380 0
|
| 383 |
+
381 1
|
| 384 |
+
382 1
|
| 385 |
+
383 1
|
| 386 |
+
384 1
|
| 387 |
+
385 0
|
| 388 |
+
386 1
|
| 389 |
+
387 1
|
| 390 |
+
388 0
|
| 391 |
+
389 1
|
| 392 |
+
390 1
|
| 393 |
+
391 0
|
| 394 |
+
392 0
|
| 395 |
+
393 0
|
| 396 |
+
394 1
|
| 397 |
+
395 1
|
| 398 |
+
396 1
|
| 399 |
+
397 1
|
| 400 |
+
398 0
|
| 401 |
+
399 1
|
| 402 |
+
400 1
|
| 403 |
+
401 0
|
| 404 |
+
402 1
|
| 405 |
+
403 1
|
| 406 |
+
404 1
|
| 407 |
+
405 1
|
| 408 |
+
406 0
|
| 409 |
+
407 0
|
| 410 |
+
408 0
|
| 411 |
+
409 1
|
| 412 |
+
410 1
|
| 413 |
+
411 1
|
| 414 |
+
412 0
|
| 415 |
+
413 1
|
| 416 |
+
414 1
|
| 417 |
+
415 0
|
| 418 |
+
416 1
|
| 419 |
+
417 1
|
| 420 |
+
418 0
|
| 421 |
+
419 1
|
| 422 |
+
420 1
|
| 423 |
+
421 1
|
| 424 |
+
422 1
|
| 425 |
+
423 0
|
| 426 |
+
424 1
|
| 427 |
+
425 0
|
| 428 |
+
426 0
|
| 429 |
+
427 1
|
| 430 |
+
428 1
|
| 431 |
+
429 1
|
| 432 |
+
430 1
|
| 433 |
+
431 0
|
| 434 |
+
432 1
|
| 435 |
+
433 1
|
| 436 |
+
434 1
|
| 437 |
+
435 1
|
| 438 |
+
436 1
|
| 439 |
+
437 1
|
| 440 |
+
438 0
|
| 441 |
+
439 1
|
| 442 |
+
440 0
|
| 443 |
+
441 0
|
| 444 |
+
442 1
|
| 445 |
+
443 1
|
| 446 |
+
444 1
|
| 447 |
+
445 1
|
| 448 |
+
446 1
|
| 449 |
+
447 1
|
| 450 |
+
448 1
|
| 451 |
+
449 1
|
| 452 |
+
450 1
|
| 453 |
+
451 1
|
| 454 |
+
452 1
|
| 455 |
+
453 0
|
| 456 |
+
454 1
|
| 457 |
+
455 1
|
| 458 |
+
456 1
|
| 459 |
+
457 1
|
| 460 |
+
458 1
|
| 461 |
+
459 0
|
| 462 |
+
460 0
|
| 463 |
+
461 1
|
| 464 |
+
462 1
|
| 465 |
+
463 0
|
| 466 |
+
464 0
|
| 467 |
+
465 0
|
| 468 |
+
466 1
|
| 469 |
+
467 0
|
| 470 |
+
468 1
|
| 471 |
+
469 0
|
| 472 |
+
470 1
|
| 473 |
+
471 1
|
| 474 |
+
472 1
|
| 475 |
+
473 1
|
| 476 |
+
474 0
|
| 477 |
+
475 1
|
| 478 |
+
476 1
|
| 479 |
+
477 0
|
| 480 |
+
478 0
|
| 481 |
+
479 1
|
| 482 |
+
480 1
|
| 483 |
+
481 0
|
| 484 |
+
482 0
|
| 485 |
+
483 1
|
| 486 |
+
484 1
|
| 487 |
+
485 1
|
| 488 |
+
486 1
|
| 489 |
+
487 1
|
| 490 |
+
488 1
|
| 491 |
+
489 0
|
| 492 |
+
490 1
|
| 493 |
+
491 1
|
| 494 |
+
492 1
|
| 495 |
+
493 0
|
| 496 |
+
494 1
|
| 497 |
+
495 1
|
| 498 |
+
496 1
|
| 499 |
+
497 0
|
| 500 |
+
498 0
|
| 501 |
+
499 1
|
| 502 |
+
500 1
|
| 503 |
+
501 0
|
| 504 |
+
502 1
|
| 505 |
+
503 1
|
| 506 |
+
504 0
|
| 507 |
+
505 1
|
| 508 |
+
506 1
|
| 509 |
+
507 1
|
| 510 |
+
508 1
|
| 511 |
+
509 1
|
| 512 |
+
510 0
|
| 513 |
+
511 0
|
| 514 |
+
512 1
|
| 515 |
+
513 1
|
| 516 |
+
514 0
|
| 517 |
+
515 0
|
| 518 |
+
516 0
|
| 519 |
+
517 1
|
| 520 |
+
518 0
|
| 521 |
+
519 1
|
| 522 |
+
520 0
|
| 523 |
+
521 1
|
| 524 |
+
522 0
|
| 525 |
+
523 1
|
| 526 |
+
524 0
|
| 527 |
+
525 1
|
| 528 |
+
526 0
|
| 529 |
+
527 1
|
| 530 |
+
528 0
|
| 531 |
+
529 0
|
| 532 |
+
530 1
|
| 533 |
+
531 1
|
| 534 |
+
532 0
|
| 535 |
+
533 1
|
| 536 |
+
534 1
|
| 537 |
+
535 1
|
| 538 |
+
536 1
|
| 539 |
+
537 0
|
| 540 |
+
538 1
|
| 541 |
+
539 0
|
| 542 |
+
540 1
|
| 543 |
+
541 1
|
| 544 |
+
542 1
|
| 545 |
+
543 1
|
| 546 |
+
544 1
|
| 547 |
+
545 1
|
| 548 |
+
546 1
|
| 549 |
+
547 1
|
| 550 |
+
548 1
|
| 551 |
+
549 1
|
| 552 |
+
550 1
|
| 553 |
+
551 0
|
| 554 |
+
552 0
|
| 555 |
+
553 0
|
| 556 |
+
554 0
|
| 557 |
+
555 0
|
| 558 |
+
556 1
|
| 559 |
+
557 0
|
| 560 |
+
558 1
|
| 561 |
+
559 1
|
| 562 |
+
560 1
|
| 563 |
+
561 1
|
| 564 |
+
562 1
|
| 565 |
+
563 0
|
| 566 |
+
564 1
|
| 567 |
+
565 0
|
| 568 |
+
566 1
|
| 569 |
+
567 0
|
| 570 |
+
568 1
|
| 571 |
+
569 1
|
| 572 |
+
570 0
|
| 573 |
+
571 1
|
| 574 |
+
572 1
|
| 575 |
+
573 1
|
| 576 |
+
574 0
|
| 577 |
+
575 1
|
| 578 |
+
576 1
|
| 579 |
+
577 1
|
| 580 |
+
578 1
|
| 581 |
+
579 1
|
| 582 |
+
580 0
|
| 583 |
+
581 0
|
| 584 |
+
582 1
|
| 585 |
+
583 0
|
| 586 |
+
584 1
|
| 587 |
+
585 1
|
| 588 |
+
586 1
|
| 589 |
+
587 1
|
| 590 |
+
588 0
|
| 591 |
+
589 0
|
| 592 |
+
590 0
|
| 593 |
+
591 1
|
| 594 |
+
592 0
|
| 595 |
+
593 1
|
| 596 |
+
594 1
|
| 597 |
+
595 1
|
| 598 |
+
596 1
|
| 599 |
+
597 0
|
| 600 |
+
598 1
|
| 601 |
+
599 1
|
| 602 |
+
600 1
|
| 603 |
+
601 0
|
| 604 |
+
602 1
|
| 605 |
+
603 1
|
| 606 |
+
604 1
|
| 607 |
+
605 0
|
| 608 |
+
606 1
|
| 609 |
+
607 1
|
| 610 |
+
608 1
|
| 611 |
+
609 1
|
| 612 |
+
610 1
|
| 613 |
+
611 1
|
| 614 |
+
612 1
|
| 615 |
+
613 1
|
| 616 |
+
614 1
|
| 617 |
+
615 0
|
| 618 |
+
616 1
|
| 619 |
+
617 1
|
| 620 |
+
618 1
|
| 621 |
+
619 1
|
| 622 |
+
620 0
|
| 623 |
+
621 1
|
| 624 |
+
622 1
|
| 625 |
+
623 1
|
| 626 |
+
624 1
|
| 627 |
+
625 0
|
| 628 |
+
626 1
|
| 629 |
+
627 0
|
| 630 |
+
628 0
|
| 631 |
+
629 0
|
| 632 |
+
630 1
|
| 633 |
+
631 1
|
| 634 |
+
632 0
|
| 635 |
+
633 1
|
| 636 |
+
634 1
|
| 637 |
+
635 0
|
| 638 |
+
636 1
|
| 639 |
+
637 1
|
| 640 |
+
638 1
|
| 641 |
+
639 1
|
| 642 |
+
640 1
|
| 643 |
+
641 0
|
| 644 |
+
642 1
|
| 645 |
+
643 0
|
| 646 |
+
644 0
|
| 647 |
+
645 1
|
| 648 |
+
646 1
|
| 649 |
+
647 0
|
| 650 |
+
648 0
|
| 651 |
+
649 1
|
| 652 |
+
650 1
|
| 653 |
+
651 0
|
| 654 |
+
652 1
|
| 655 |
+
653 0
|
| 656 |
+
654 0
|
| 657 |
+
655 1
|
| 658 |
+
656 1
|
| 659 |
+
657 0
|
| 660 |
+
658 1
|
| 661 |
+
659 1
|
| 662 |
+
660 0
|
| 663 |
+
661 0
|
| 664 |
+
662 1
|
| 665 |
+
663 1
|
| 666 |
+
664 0
|
| 667 |
+
665 1
|
| 668 |
+
666 0
|
| 669 |
+
667 1
|
| 670 |
+
668 0
|
| 671 |
+
669 1
|
| 672 |
+
670 0
|
| 673 |
+
671 1
|
| 674 |
+
672 1
|
| 675 |
+
673 1
|
| 676 |
+
674 0
|
| 677 |
+
675 1
|
| 678 |
+
676 1
|
| 679 |
+
677 1
|
| 680 |
+
678 1
|
| 681 |
+
679 1
|
| 682 |
+
680 0
|
| 683 |
+
681 1
|
| 684 |
+
682 1
|
| 685 |
+
683 1
|
| 686 |
+
684 1
|
| 687 |
+
685 1
|
| 688 |
+
686 0
|
| 689 |
+
687 1
|
| 690 |
+
688 1
|
| 691 |
+
689 0
|
| 692 |
+
690 1
|
| 693 |
+
691 0
|
| 694 |
+
692 0
|
| 695 |
+
693 1
|
| 696 |
+
694 1
|
| 697 |
+
695 1
|
| 698 |
+
696 0
|
| 699 |
+
697 1
|
| 700 |
+
698 1
|
| 701 |
+
699 1
|
| 702 |
+
700 0
|
| 703 |
+
701 1
|
| 704 |
+
702 1
|
| 705 |
+
703 1
|
| 706 |
+
704 1
|
| 707 |
+
705 1
|
| 708 |
+
706 1
|
| 709 |
+
707 1
|
| 710 |
+
708 1
|
| 711 |
+
709 1
|
| 712 |
+
710 1
|
| 713 |
+
711 0
|
| 714 |
+
712 1
|
| 715 |
+
713 0
|
| 716 |
+
714 0
|
| 717 |
+
715 1
|
| 718 |
+
716 0
|
| 719 |
+
717 0
|
| 720 |
+
718 1
|
| 721 |
+
719 0
|
| 722 |
+
720 1
|
| 723 |
+
721 1
|
| 724 |
+
722 1
|
finetune/boolq/pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:51931eeadf8ad3ae73a1fc172ba1d9006633436fb37eb9357a7c35007e423a5e
|
| 3 |
+
size 577069633
|
finetune/boolq/special_tokens_map.json
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": "<s>",
|
| 3 |
+
"cls_token": "<s>",
|
| 4 |
+
"eos_token": "</s>",
|
| 5 |
+
"mask_token": {
|
| 6 |
+
"content": "<mask>",
|
| 7 |
+
"lstrip": true,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false
|
| 11 |
+
},
|
| 12 |
+
"pad_token": "<pad>",
|
| 13 |
+
"sep_token": "</s>",
|
| 14 |
+
"unk_token": "<unk>"
|
| 15 |
+
}
|
finetune/boolq/tokenizer_config.json
ADDED
|
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_prefix_space": false,
|
| 3 |
+
"bos_token": {
|
| 4 |
+
"__type": "AddedToken",
|
| 5 |
+
"content": "<s>",
|
| 6 |
+
"lstrip": false,
|
| 7 |
+
"normalized": true,
|
| 8 |
+
"rstrip": false,
|
| 9 |
+
"single_word": false
|
| 10 |
+
},
|
| 11 |
+
"cls_token": {
|
| 12 |
+
"__type": "AddedToken",
|
| 13 |
+
"content": "<s>",
|
| 14 |
+
"lstrip": false,
|
| 15 |
+
"normalized": true,
|
| 16 |
+
"rstrip": false,
|
| 17 |
+
"single_word": false
|
| 18 |
+
},
|
| 19 |
+
"eos_token": {
|
| 20 |
+
"__type": "AddedToken",
|
| 21 |
+
"content": "</s>",
|
| 22 |
+
"lstrip": false,
|
| 23 |
+
"normalized": true,
|
| 24 |
+
"rstrip": false,
|
| 25 |
+
"single_word": false
|
| 26 |
+
},
|
| 27 |
+
"errors": "replace",
|
| 28 |
+
"mask_token": {
|
| 29 |
+
"__type": "AddedToken",
|
| 30 |
+
"content": "<mask>",
|
| 31 |
+
"lstrip": true,
|
| 32 |
+
"normalized": false,
|
| 33 |
+
"rstrip": false,
|
| 34 |
+
"single_word": false
|
| 35 |
+
},
|
| 36 |
+
"model_max_length": 512,
|
| 37 |
+
"name_or_path": "final_models/structroberta_sx2_final",
|
| 38 |
+
"pad_token": {
|
| 39 |
+
"__type": "AddedToken",
|
| 40 |
+
"content": "<pad>",
|
| 41 |
+
"lstrip": false,
|
| 42 |
+
"normalized": true,
|
| 43 |
+
"rstrip": false,
|
| 44 |
+
"single_word": false
|
| 45 |
+
},
|
| 46 |
+
"sep_token": {
|
| 47 |
+
"__type": "AddedToken",
|
| 48 |
+
"content": "</s>",
|
| 49 |
+
"lstrip": false,
|
| 50 |
+
"normalized": true,
|
| 51 |
+
"rstrip": false,
|
| 52 |
+
"single_word": false
|
| 53 |
+
},
|
| 54 |
+
"special_tokens_map_file": null,
|
| 55 |
+
"tokenizer_class": "RobertaTokenizer",
|
| 56 |
+
"trim_offsets": true,
|
| 57 |
+
"unk_token": {
|
| 58 |
+
"__type": "AddedToken",
|
| 59 |
+
"content": "<unk>",
|
| 60 |
+
"lstrip": false,
|
| 61 |
+
"normalized": true,
|
| 62 |
+
"rstrip": false,
|
| 63 |
+
"single_word": false
|
| 64 |
+
}
|
| 65 |
+
}
|
finetune/boolq/train_results.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"epoch": 10.0,
|
| 3 |
+
"train_loss": 0.3817570156521267,
|
| 4 |
+
"train_runtime": 95.4851,
|
| 5 |
+
"train_samples": 2072,
|
| 6 |
+
"train_samples_per_second": 216.997,
|
| 7 |
+
"train_steps_per_second": 1.885
|
| 8 |
+
}
|
finetune/boolq/trainer_state.json
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_metric": null,
|
| 3 |
+
"best_model_checkpoint": null,
|
| 4 |
+
"epoch": 10.0,
|
| 5 |
+
"global_step": 180,
|
| 6 |
+
"is_hyper_param_search": false,
|
| 7 |
+
"is_local_process_zero": true,
|
| 8 |
+
"is_world_process_zero": true,
|
| 9 |
+
"log_history": [
|
| 10 |
+
{
|
| 11 |
+
"epoch": 10.0,
|
| 12 |
+
"step": 180,
|
| 13 |
+
"total_flos": 1898033803223040.0,
|
| 14 |
+
"train_loss": 0.3817570156521267,
|
| 15 |
+
"train_runtime": 95.4851,
|
| 16 |
+
"train_samples_per_second": 216.997,
|
| 17 |
+
"train_steps_per_second": 1.885
|
| 18 |
+
}
|
| 19 |
+
],
|
| 20 |
+
"max_steps": 180,
|
| 21 |
+
"num_train_epochs": 10,
|
| 22 |
+
"total_flos": 1898033803223040.0,
|
| 23 |
+
"trial_name": null,
|
| 24 |
+
"trial_params": null
|
| 25 |
+
}
|
finetune/boolq/training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8b8ff19c91b7744abf01e78ed8ae95d953473a8e341bcbf64b13d1376902090c
|
| 3 |
+
size 3503
|
finetune/boolq/vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
finetune/cola/all_results.json
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"epoch": 10.0,
|
| 3 |
+
"eval_accuracy": 0.7065750956535339,
|
| 4 |
+
"eval_f1": 0.7994634473507714,
|
| 5 |
+
"eval_loss": 0.7585899829864502,
|
| 6 |
+
"eval_mcc": 0.262551358979245,
|
| 7 |
+
"eval_runtime": 2.1721,
|
| 8 |
+
"eval_samples": 1019,
|
| 9 |
+
"eval_samples_per_second": 469.121,
|
| 10 |
+
"eval_steps_per_second": 58.928,
|
| 11 |
+
"train_loss": 0.3363707777382671,
|
| 12 |
+
"train_runtime": 371.6095,
|
| 13 |
+
"train_samples": 8164,
|
| 14 |
+
"train_samples_per_second": 219.693,
|
| 15 |
+
"train_steps_per_second": 1.857
|
| 16 |
+
}
|
finetune/cola/checkpoint-400/config.json
ADDED
|
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "final_models/structroberta_sx2_final",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"StructRobertaForSequenceClassification"
|
| 5 |
+
],
|
| 6 |
+
"attention_probs_dropout_prob": 0.1,
|
| 7 |
+
"auto_map": {
|
| 8 |
+
"AutoConfig": "modeling_structroberta.StructRobertaConfig",
|
| 9 |
+
"AutoModelForMaskedLM": "modeling_structroberta.StructRoberta",
|
| 10 |
+
"AutoModelForSequenceClassification": "modeling_structroberta.StructRobertaForSequenceClassification"
|
| 11 |
+
},
|
| 12 |
+
"bos_token_id": 0,
|
| 13 |
+
"classifier_dropout": null,
|
| 14 |
+
"conv_size": 9,
|
| 15 |
+
"eos_token_id": 2,
|
| 16 |
+
"hidden_act": "gelu",
|
| 17 |
+
"hidden_dropout_prob": 0.1,
|
| 18 |
+
"hidden_size": 768,
|
| 19 |
+
"id2label": {
|
| 20 |
+
"0": 0,
|
| 21 |
+
"1": 1
|
| 22 |
+
},
|
| 23 |
+
"initializer_range": 0.02,
|
| 24 |
+
"intermediate_size": 3072,
|
| 25 |
+
"label2id": {
|
| 26 |
+
"0": 0,
|
| 27 |
+
"1": 1
|
| 28 |
+
},
|
| 29 |
+
"layer_norm_eps": 1e-05,
|
| 30 |
+
"max_position_embeddings": 514,
|
| 31 |
+
"model_type": "roberta",
|
| 32 |
+
"n_cntxt_layers": 4,
|
| 33 |
+
"n_cntxt_layers_2": 0,
|
| 34 |
+
"n_parser_layers": 6,
|
| 35 |
+
"num_attention_heads": 12,
|
| 36 |
+
"num_hidden_layers": 8,
|
| 37 |
+
"pad_token_id": 1,
|
| 38 |
+
"position_embedding_type": "absolute",
|
| 39 |
+
"problem_type": "single_label_classification",
|
| 40 |
+
"relations": [
|
| 41 |
+
"head",
|
| 42 |
+
"child"
|
| 43 |
+
],
|
| 44 |
+
"torch_dtype": "float32",
|
| 45 |
+
"transformers_version": "4.26.1",
|
| 46 |
+
"type_vocab_size": 1,
|
| 47 |
+
"use_cache": true,
|
| 48 |
+
"vocab_size": 32000,
|
| 49 |
+
"weight_act": "softmax"
|
| 50 |
+
}
|
finetune/cola/checkpoint-400/merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
finetune/cola/checkpoint-400/modeling_structroberta.py
ADDED
|
@@ -0,0 +1,2146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import copy
|
| 2 |
+
import math
|
| 3 |
+
from typing import List, Optional, Tuple, Union
|
| 4 |
+
import torch
|
| 5 |
+
import torch.utils.checkpoint
|
| 6 |
+
from packaging import version
|
| 7 |
+
from torch import nn
|
| 8 |
+
import torch.nn.functional as F
|
| 9 |
+
from torch.nn import CrossEntropyLoss, MSELoss, BCEWithLogitsLoss
|
| 10 |
+
from transformers.activations import ACT2FN, gelu
|
| 11 |
+
from transformers.modeling_outputs import (
|
| 12 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
| 13 |
+
BaseModelOutputWithPoolingAndCrossAttentions,
|
| 14 |
+
MaskedLMOutput,
|
| 15 |
+
SequenceClassifierOutput
|
| 16 |
+
)
|
| 17 |
+
from transformers.modeling_utils import (
|
| 18 |
+
PreTrainedModel,
|
| 19 |
+
apply_chunking_to_forward,
|
| 20 |
+
find_pruneable_heads_and_indices,
|
| 21 |
+
prune_linear_layer,
|
| 22 |
+
)
|
| 23 |
+
from transformers.utils import logging
|
| 24 |
+
from transformers import RobertaConfig
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
logger = logging.get_logger(__name__)
|
| 28 |
+
ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
| 29 |
+
"roberta-base",
|
| 30 |
+
"roberta-large",
|
| 31 |
+
"roberta-large-mnli",
|
| 32 |
+
"distilroberta-base",
|
| 33 |
+
"roberta-base-openai-detector",
|
| 34 |
+
"roberta-large-openai-detector",
|
| 35 |
+
# See all RoBERTa models at https://huggingface.co/models?filter=roberta
|
| 36 |
+
]
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
class StructRobertaConfig(RobertaConfig):
|
| 40 |
+
model_type = "roberta"
|
| 41 |
+
|
| 42 |
+
def __init__(
|
| 43 |
+
self,
|
| 44 |
+
n_parser_layers=4,
|
| 45 |
+
conv_size=9,
|
| 46 |
+
relations=("head", "child"),
|
| 47 |
+
weight_act="softmax",
|
| 48 |
+
n_cntxt_layers=3,
|
| 49 |
+
n_cntxt_layers_2=0,
|
| 50 |
+
**kwargs,):
|
| 51 |
+
|
| 52 |
+
super().__init__(**kwargs)
|
| 53 |
+
self.n_cntxt_layers = n_cntxt_layers
|
| 54 |
+
self.n_parser_layers = n_parser_layers
|
| 55 |
+
self.n_cntxt_layers_2 = n_cntxt_layers_2
|
| 56 |
+
self.conv_size = conv_size
|
| 57 |
+
self.relations = relations
|
| 58 |
+
self.weight_act = weight_act
|
| 59 |
+
|
| 60 |
+
class Conv1d(nn.Module):
|
| 61 |
+
"""1D convolution layer."""
|
| 62 |
+
|
| 63 |
+
def __init__(self, hidden_size, kernel_size, dilation=1):
|
| 64 |
+
"""Initialization.
|
| 65 |
+
|
| 66 |
+
Args:
|
| 67 |
+
hidden_size: dimension of input embeddings
|
| 68 |
+
kernel_size: convolution kernel size
|
| 69 |
+
dilation: the spacing between the kernel points
|
| 70 |
+
"""
|
| 71 |
+
super(Conv1d, self).__init__()
|
| 72 |
+
|
| 73 |
+
if kernel_size % 2 == 0:
|
| 74 |
+
padding = (kernel_size // 2) * dilation
|
| 75 |
+
self.shift = True
|
| 76 |
+
else:
|
| 77 |
+
padding = ((kernel_size - 1) // 2) * dilation
|
| 78 |
+
self.shift = False
|
| 79 |
+
self.conv = nn.Conv1d(
|
| 80 |
+
hidden_size, hidden_size, kernel_size, padding=padding, dilation=dilation
|
| 81 |
+
)
|
| 82 |
+
|
| 83 |
+
def forward(self, x):
|
| 84 |
+
"""Compute convolution.
|
| 85 |
+
|
| 86 |
+
Args:
|
| 87 |
+
x: input embeddings
|
| 88 |
+
Returns:
|
| 89 |
+
conv_output: convolution results
|
| 90 |
+
"""
|
| 91 |
+
|
| 92 |
+
if self.shift:
|
| 93 |
+
return self.conv(x.transpose(1, 2)).transpose(1, 2)[:, 1:]
|
| 94 |
+
else:
|
| 95 |
+
return self.conv(x.transpose(1, 2)).transpose(1, 2)
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
class RobertaEmbeddings(nn.Module):
|
| 99 |
+
"""
|
| 100 |
+
Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
|
| 101 |
+
"""
|
| 102 |
+
|
| 103 |
+
# Copied from transformers.models.bert.modeling_bert.BertEmbeddings.__init__
|
| 104 |
+
def __init__(self, config):
|
| 105 |
+
super().__init__()
|
| 106 |
+
self.word_embeddings = nn.Embedding(
|
| 107 |
+
config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id
|
| 108 |
+
)
|
| 109 |
+
self.position_embeddings = nn.Embedding(
|
| 110 |
+
config.max_position_embeddings, config.hidden_size
|
| 111 |
+
)
|
| 112 |
+
self.token_type_embeddings = nn.Embedding(
|
| 113 |
+
config.type_vocab_size, config.hidden_size
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
| 117 |
+
# any TensorFlow checkpoint file
|
| 118 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 119 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 120 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
| 121 |
+
self.position_embedding_type = getattr(
|
| 122 |
+
config, "position_embedding_type", "absolute"
|
| 123 |
+
)
|
| 124 |
+
self.register_buffer(
|
| 125 |
+
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1))
|
| 126 |
+
)
|
| 127 |
+
if version.parse(torch.__version__) > version.parse("1.6.0"):
|
| 128 |
+
self.register_buffer(
|
| 129 |
+
"token_type_ids",
|
| 130 |
+
torch.zeros(self.position_ids.size(), dtype=torch.long),
|
| 131 |
+
persistent=False,
|
| 132 |
+
)
|
| 133 |
+
|
| 134 |
+
# End copy
|
| 135 |
+
self.padding_idx = config.pad_token_id
|
| 136 |
+
self.position_embeddings = nn.Embedding(
|
| 137 |
+
config.max_position_embeddings,
|
| 138 |
+
config.hidden_size,
|
| 139 |
+
padding_idx=self.padding_idx,
|
| 140 |
+
)
|
| 141 |
+
|
| 142 |
+
def forward(
|
| 143 |
+
self,
|
| 144 |
+
input_ids=None,
|
| 145 |
+
token_type_ids=None,
|
| 146 |
+
position_ids=None,
|
| 147 |
+
inputs_embeds=None,
|
| 148 |
+
past_key_values_length=0,
|
| 149 |
+
):
|
| 150 |
+
if position_ids is None:
|
| 151 |
+
if input_ids is not None:
|
| 152 |
+
# Create the position ids from the input token ids. Any padded tokens remain padded.
|
| 153 |
+
position_ids = create_position_ids_from_input_ids(
|
| 154 |
+
input_ids, self.padding_idx, past_key_values_length
|
| 155 |
+
)
|
| 156 |
+
else:
|
| 157 |
+
position_ids = self.create_position_ids_from_inputs_embeds(
|
| 158 |
+
inputs_embeds
|
| 159 |
+
)
|
| 160 |
+
|
| 161 |
+
if input_ids is not None:
|
| 162 |
+
input_shape = input_ids.size()
|
| 163 |
+
else:
|
| 164 |
+
input_shape = inputs_embeds.size()[:-1]
|
| 165 |
+
|
| 166 |
+
seq_length = input_shape[1]
|
| 167 |
+
|
| 168 |
+
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
|
| 169 |
+
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
|
| 170 |
+
# issue #5664
|
| 171 |
+
if token_type_ids is None:
|
| 172 |
+
if hasattr(self, "token_type_ids"):
|
| 173 |
+
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
|
| 174 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(
|
| 175 |
+
input_shape[0], seq_length
|
| 176 |
+
)
|
| 177 |
+
token_type_ids = buffered_token_type_ids_expanded
|
| 178 |
+
else:
|
| 179 |
+
token_type_ids = torch.zeros(
|
| 180 |
+
input_shape, dtype=torch.long, device=self.position_ids.device
|
| 181 |
+
)
|
| 182 |
+
|
| 183 |
+
if inputs_embeds is None:
|
| 184 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
| 185 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
| 186 |
+
|
| 187 |
+
embeddings = inputs_embeds + token_type_embeddings
|
| 188 |
+
if self.position_embedding_type == "absolute":
|
| 189 |
+
position_embeddings = self.position_embeddings(position_ids)
|
| 190 |
+
embeddings += position_embeddings
|
| 191 |
+
embeddings = self.LayerNorm(embeddings)
|
| 192 |
+
embeddings = self.dropout(embeddings)
|
| 193 |
+
return embeddings
|
| 194 |
+
|
| 195 |
+
def create_position_ids_from_inputs_embeds(self, inputs_embeds):
|
| 196 |
+
"""
|
| 197 |
+
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
|
| 198 |
+
|
| 199 |
+
Args:
|
| 200 |
+
inputs_embeds: torch.Tensor
|
| 201 |
+
|
| 202 |
+
Returns: torch.Tensor
|
| 203 |
+
"""
|
| 204 |
+
input_shape = inputs_embeds.size()[:-1]
|
| 205 |
+
sequence_length = input_shape[1]
|
| 206 |
+
|
| 207 |
+
position_ids = torch.arange(
|
| 208 |
+
self.padding_idx + 1,
|
| 209 |
+
sequence_length + self.padding_idx + 1,
|
| 210 |
+
dtype=torch.long,
|
| 211 |
+
device=inputs_embeds.device,
|
| 212 |
+
)
|
| 213 |
+
return position_ids.unsqueeze(0).expand(input_shape)
|
| 214 |
+
|
| 215 |
+
|
| 216 |
+
# Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->Roberta
|
| 217 |
+
class RobertaSelfAttention(nn.Module):
|
| 218 |
+
def __init__(self, config, position_embedding_type=None):
|
| 219 |
+
super().__init__()
|
| 220 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(
|
| 221 |
+
config, "embedding_size"
|
| 222 |
+
):
|
| 223 |
+
raise ValueError(
|
| 224 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
| 225 |
+
f"heads ({config.num_attention_heads})"
|
| 226 |
+
)
|
| 227 |
+
|
| 228 |
+
self.num_attention_heads = config.num_attention_heads
|
| 229 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
| 230 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
| 231 |
+
|
| 232 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
| 233 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
| 234 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
| 235 |
+
|
| 236 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
| 237 |
+
self.position_embedding_type = position_embedding_type or getattr(
|
| 238 |
+
config, "position_embedding_type", "absolute"
|
| 239 |
+
)
|
| 240 |
+
if (
|
| 241 |
+
self.position_embedding_type == "relative_key"
|
| 242 |
+
or self.position_embedding_type == "relative_key_query"
|
| 243 |
+
):
|
| 244 |
+
self.max_position_embeddings = config.max_position_embeddings
|
| 245 |
+
self.distance_embedding = nn.Embedding(
|
| 246 |
+
2 * config.max_position_embeddings - 1, self.attention_head_size
|
| 247 |
+
)
|
| 248 |
+
|
| 249 |
+
self.is_decoder = config.is_decoder
|
| 250 |
+
|
| 251 |
+
def transpose_for_scores(self, x):
|
| 252 |
+
new_x_shape = x.size()[:-1] + (
|
| 253 |
+
self.num_attention_heads,
|
| 254 |
+
self.attention_head_size,
|
| 255 |
+
)
|
| 256 |
+
x = x.view(new_x_shape)
|
| 257 |
+
return x.permute(0, 2, 1, 3)
|
| 258 |
+
|
| 259 |
+
def forward(
|
| 260 |
+
self,
|
| 261 |
+
hidden_states: torch.Tensor,
|
| 262 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 263 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 264 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
| 265 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 266 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
| 267 |
+
output_attentions: Optional[bool] = False,
|
| 268 |
+
parser_att_mask=None,
|
| 269 |
+
) -> Tuple[torch.Tensor]:
|
| 270 |
+
mixed_query_layer = self.query(hidden_states)
|
| 271 |
+
|
| 272 |
+
# If this is instantiated as a cross-attention module, the keys
|
| 273 |
+
# and values come from an encoder; the attention mask needs to be
|
| 274 |
+
# such that the encoder's padding tokens are not attended to.
|
| 275 |
+
is_cross_attention = encoder_hidden_states is not None
|
| 276 |
+
|
| 277 |
+
if is_cross_attention and past_key_value is not None:
|
| 278 |
+
# reuse k,v, cross_attentions
|
| 279 |
+
key_layer = past_key_value[0]
|
| 280 |
+
value_layer = past_key_value[1]
|
| 281 |
+
attention_mask = encoder_attention_mask
|
| 282 |
+
elif is_cross_attention:
|
| 283 |
+
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
|
| 284 |
+
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
|
| 285 |
+
attention_mask = encoder_attention_mask
|
| 286 |
+
elif past_key_value is not None:
|
| 287 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
| 288 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
| 289 |
+
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
|
| 290 |
+
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
|
| 291 |
+
else:
|
| 292 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
| 293 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
| 294 |
+
|
| 295 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
| 296 |
+
|
| 297 |
+
if self.is_decoder:
|
| 298 |
+
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
| 299 |
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
| 300 |
+
# key/value_states (first "if" case)
|
| 301 |
+
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
| 302 |
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
| 303 |
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
| 304 |
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
| 305 |
+
past_key_value = (key_layer, value_layer)
|
| 306 |
+
|
| 307 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
| 308 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
| 309 |
+
|
| 310 |
+
if (
|
| 311 |
+
self.position_embedding_type == "relative_key"
|
| 312 |
+
or self.position_embedding_type == "relative_key_query"
|
| 313 |
+
):
|
| 314 |
+
seq_length = hidden_states.size()[1]
|
| 315 |
+
position_ids_l = torch.arange(
|
| 316 |
+
seq_length, dtype=torch.long, device=hidden_states.device
|
| 317 |
+
).view(-1, 1)
|
| 318 |
+
position_ids_r = torch.arange(
|
| 319 |
+
seq_length, dtype=torch.long, device=hidden_states.device
|
| 320 |
+
).view(1, -1)
|
| 321 |
+
distance = position_ids_l - position_ids_r
|
| 322 |
+
positional_embedding = self.distance_embedding(
|
| 323 |
+
distance + self.max_position_embeddings - 1
|
| 324 |
+
)
|
| 325 |
+
positional_embedding = positional_embedding.to(
|
| 326 |
+
dtype=query_layer.dtype
|
| 327 |
+
) # fp16 compatibility
|
| 328 |
+
|
| 329 |
+
if self.position_embedding_type == "relative_key":
|
| 330 |
+
relative_position_scores = torch.einsum(
|
| 331 |
+
"bhld,lrd->bhlr", query_layer, positional_embedding
|
| 332 |
+
)
|
| 333 |
+
attention_scores = attention_scores + relative_position_scores
|
| 334 |
+
elif self.position_embedding_type == "relative_key_query":
|
| 335 |
+
relative_position_scores_query = torch.einsum(
|
| 336 |
+
"bhld,lrd->bhlr", query_layer, positional_embedding
|
| 337 |
+
)
|
| 338 |
+
relative_position_scores_key = torch.einsum(
|
| 339 |
+
"bhrd,lrd->bhlr", key_layer, positional_embedding
|
| 340 |
+
)
|
| 341 |
+
attention_scores = (
|
| 342 |
+
attention_scores
|
| 343 |
+
+ relative_position_scores_query
|
| 344 |
+
+ relative_position_scores_key
|
| 345 |
+
)
|
| 346 |
+
|
| 347 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
| 348 |
+
if attention_mask is not None:
|
| 349 |
+
# Apply the attention mask is (precomputed for all layers in RobertaModel forward() function)
|
| 350 |
+
attention_scores = attention_scores + attention_mask
|
| 351 |
+
|
| 352 |
+
if parser_att_mask is None:
|
| 353 |
+
# Normalize the attention scores to probabilities.
|
| 354 |
+
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
| 355 |
+
else:
|
| 356 |
+
attention_probs = torch.sigmoid(attention_scores) * parser_att_mask
|
| 357 |
+
|
| 358 |
+
# This is actually dropping out entire tokens to attend to, which might
|
| 359 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
| 360 |
+
attention_probs = self.dropout(attention_probs)
|
| 361 |
+
|
| 362 |
+
# Mask heads if we want to
|
| 363 |
+
if head_mask is not None:
|
| 364 |
+
attention_probs = attention_probs * head_mask
|
| 365 |
+
|
| 366 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
| 367 |
+
|
| 368 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
| 369 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
| 370 |
+
context_layer = context_layer.view(new_context_layer_shape)
|
| 371 |
+
|
| 372 |
+
outputs = (
|
| 373 |
+
(context_layer, attention_probs) if output_attentions else (context_layer,)
|
| 374 |
+
)
|
| 375 |
+
|
| 376 |
+
if self.is_decoder:
|
| 377 |
+
outputs = outputs + (past_key_value,)
|
| 378 |
+
return outputs
|
| 379 |
+
|
| 380 |
+
|
| 381 |
+
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput
|
| 382 |
+
class RobertaSelfOutput(nn.Module):
|
| 383 |
+
def __init__(self, config):
|
| 384 |
+
super().__init__()
|
| 385 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
| 386 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 387 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 388 |
+
|
| 389 |
+
def forward(
|
| 390 |
+
self, hidden_states: torch.Tensor, input_tensor: torch.Tensor
|
| 391 |
+
) -> torch.Tensor:
|
| 392 |
+
hidden_states = self.dense(hidden_states)
|
| 393 |
+
hidden_states = self.dropout(hidden_states)
|
| 394 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
| 395 |
+
return hidden_states
|
| 396 |
+
|
| 397 |
+
|
| 398 |
+
# Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->Roberta
|
| 399 |
+
class RobertaAttention(nn.Module):
|
| 400 |
+
def __init__(self, config, position_embedding_type=None):
|
| 401 |
+
super().__init__()
|
| 402 |
+
self.self = RobertaSelfAttention(
|
| 403 |
+
config, position_embedding_type=position_embedding_type
|
| 404 |
+
)
|
| 405 |
+
self.output = RobertaSelfOutput(config)
|
| 406 |
+
self.pruned_heads = set()
|
| 407 |
+
|
| 408 |
+
def prune_heads(self, heads):
|
| 409 |
+
if len(heads) == 0:
|
| 410 |
+
return
|
| 411 |
+
heads, index = find_pruneable_heads_and_indices(
|
| 412 |
+
heads,
|
| 413 |
+
self.self.num_attention_heads,
|
| 414 |
+
self.self.attention_head_size,
|
| 415 |
+
self.pruned_heads,
|
| 416 |
+
)
|
| 417 |
+
|
| 418 |
+
# Prune linear layers
|
| 419 |
+
self.self.query = prune_linear_layer(self.self.query, index)
|
| 420 |
+
self.self.key = prune_linear_layer(self.self.key, index)
|
| 421 |
+
self.self.value = prune_linear_layer(self.self.value, index)
|
| 422 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
| 423 |
+
|
| 424 |
+
# Update hyper params and store pruned heads
|
| 425 |
+
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
| 426 |
+
self.self.all_head_size = (
|
| 427 |
+
self.self.attention_head_size * self.self.num_attention_heads
|
| 428 |
+
)
|
| 429 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
| 430 |
+
|
| 431 |
+
def forward(
|
| 432 |
+
self,
|
| 433 |
+
hidden_states: torch.Tensor,
|
| 434 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 435 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 436 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
| 437 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 438 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
| 439 |
+
output_attentions: Optional[bool] = False,
|
| 440 |
+
parser_att_mask=None,
|
| 441 |
+
) -> Tuple[torch.Tensor]:
|
| 442 |
+
self_outputs = self.self(
|
| 443 |
+
hidden_states,
|
| 444 |
+
attention_mask,
|
| 445 |
+
head_mask,
|
| 446 |
+
encoder_hidden_states,
|
| 447 |
+
encoder_attention_mask,
|
| 448 |
+
past_key_value,
|
| 449 |
+
output_attentions,
|
| 450 |
+
parser_att_mask=parser_att_mask,
|
| 451 |
+
)
|
| 452 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
| 453 |
+
outputs = (attention_output,) + self_outputs[
|
| 454 |
+
1:
|
| 455 |
+
] # add attentions if we output them
|
| 456 |
+
return outputs
|
| 457 |
+
|
| 458 |
+
|
| 459 |
+
# Copied from transformers.models.bert.modeling_bert.BertIntermediate
|
| 460 |
+
class RobertaIntermediate(nn.Module):
|
| 461 |
+
def __init__(self, config):
|
| 462 |
+
super().__init__()
|
| 463 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
| 464 |
+
if isinstance(config.hidden_act, str):
|
| 465 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
| 466 |
+
else:
|
| 467 |
+
self.intermediate_act_fn = config.hidden_act
|
| 468 |
+
|
| 469 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 470 |
+
hidden_states = self.dense(hidden_states)
|
| 471 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
| 472 |
+
return hidden_states
|
| 473 |
+
|
| 474 |
+
|
| 475 |
+
# Copied from transformers.models.bert.modeling_bert.BertOutput
|
| 476 |
+
class RobertaOutput(nn.Module):
|
| 477 |
+
def __init__(self, config):
|
| 478 |
+
super().__init__()
|
| 479 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
| 480 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 481 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 482 |
+
|
| 483 |
+
def forward(
|
| 484 |
+
self, hidden_states: torch.Tensor, input_tensor: torch.Tensor
|
| 485 |
+
) -> torch.Tensor:
|
| 486 |
+
hidden_states = self.dense(hidden_states)
|
| 487 |
+
hidden_states = self.dropout(hidden_states)
|
| 488 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
| 489 |
+
return hidden_states
|
| 490 |
+
|
| 491 |
+
|
| 492 |
+
# Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->Roberta
|
| 493 |
+
class RobertaLayer(nn.Module):
|
| 494 |
+
def __init__(self, config):
|
| 495 |
+
super().__init__()
|
| 496 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
| 497 |
+
self.seq_len_dim = 1
|
| 498 |
+
self.attention = RobertaAttention(config)
|
| 499 |
+
self.is_decoder = config.is_decoder
|
| 500 |
+
self.add_cross_attention = config.add_cross_attention
|
| 501 |
+
if self.add_cross_attention:
|
| 502 |
+
if not self.is_decoder:
|
| 503 |
+
raise ValueError(
|
| 504 |
+
f"{self} should be used as a decoder model if cross attention is added"
|
| 505 |
+
)
|
| 506 |
+
self.crossattention = RobertaAttention(
|
| 507 |
+
config, position_embedding_type="absolute"
|
| 508 |
+
)
|
| 509 |
+
self.intermediate = RobertaIntermediate(config)
|
| 510 |
+
self.output = RobertaOutput(config)
|
| 511 |
+
|
| 512 |
+
def forward(
|
| 513 |
+
self,
|
| 514 |
+
hidden_states: torch.Tensor,
|
| 515 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 516 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 517 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
| 518 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 519 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
| 520 |
+
output_attentions: Optional[bool] = False,
|
| 521 |
+
parser_att_mask=None,
|
| 522 |
+
) -> Tuple[torch.Tensor]:
|
| 523 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
| 524 |
+
self_attn_past_key_value = (
|
| 525 |
+
past_key_value[:2] if past_key_value is not None else None
|
| 526 |
+
)
|
| 527 |
+
self_attention_outputs = self.attention(
|
| 528 |
+
hidden_states,
|
| 529 |
+
attention_mask,
|
| 530 |
+
head_mask,
|
| 531 |
+
output_attentions=output_attentions,
|
| 532 |
+
past_key_value=self_attn_past_key_value,
|
| 533 |
+
parser_att_mask=parser_att_mask,
|
| 534 |
+
)
|
| 535 |
+
attention_output = self_attention_outputs[0]
|
| 536 |
+
|
| 537 |
+
# if decoder, the last output is tuple of self-attn cache
|
| 538 |
+
if self.is_decoder:
|
| 539 |
+
outputs = self_attention_outputs[1:-1]
|
| 540 |
+
present_key_value = self_attention_outputs[-1]
|
| 541 |
+
else:
|
| 542 |
+
outputs = self_attention_outputs[
|
| 543 |
+
1:
|
| 544 |
+
] # add self attentions if we output attention weights
|
| 545 |
+
|
| 546 |
+
cross_attn_present_key_value = None
|
| 547 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
| 548 |
+
if not hasattr(self, "crossattention"):
|
| 549 |
+
raise ValueError(
|
| 550 |
+
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers by setting `config.add_cross_attention=True`"
|
| 551 |
+
)
|
| 552 |
+
|
| 553 |
+
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
|
| 554 |
+
cross_attn_past_key_value = (
|
| 555 |
+
past_key_value[-2:] if past_key_value is not None else None
|
| 556 |
+
)
|
| 557 |
+
cross_attention_outputs = self.crossattention(
|
| 558 |
+
attention_output,
|
| 559 |
+
attention_mask,
|
| 560 |
+
head_mask,
|
| 561 |
+
encoder_hidden_states,
|
| 562 |
+
encoder_attention_mask,
|
| 563 |
+
cross_attn_past_key_value,
|
| 564 |
+
output_attentions,
|
| 565 |
+
)
|
| 566 |
+
attention_output = cross_attention_outputs[0]
|
| 567 |
+
outputs = (
|
| 568 |
+
outputs + cross_attention_outputs[1:-1]
|
| 569 |
+
) # add cross attentions if we output attention weights
|
| 570 |
+
|
| 571 |
+
# add cross-attn cache to positions 3,4 of present_key_value tuple
|
| 572 |
+
cross_attn_present_key_value = cross_attention_outputs[-1]
|
| 573 |
+
present_key_value = present_key_value + cross_attn_present_key_value
|
| 574 |
+
|
| 575 |
+
layer_output = apply_chunking_to_forward(
|
| 576 |
+
self.feed_forward_chunk,
|
| 577 |
+
self.chunk_size_feed_forward,
|
| 578 |
+
self.seq_len_dim,
|
| 579 |
+
attention_output,
|
| 580 |
+
)
|
| 581 |
+
outputs = (layer_output,) + outputs
|
| 582 |
+
|
| 583 |
+
# if decoder, return the attn key/values as the last output
|
| 584 |
+
if self.is_decoder:
|
| 585 |
+
outputs = outputs + (present_key_value,)
|
| 586 |
+
|
| 587 |
+
return outputs
|
| 588 |
+
|
| 589 |
+
def feed_forward_chunk(self, attention_output):
|
| 590 |
+
intermediate_output = self.intermediate(attention_output)
|
| 591 |
+
layer_output = self.output(intermediate_output, attention_output)
|
| 592 |
+
return layer_output
|
| 593 |
+
|
| 594 |
+
|
| 595 |
+
# Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->Roberta
|
| 596 |
+
class RobertaEncoder(nn.Module):
|
| 597 |
+
def __init__(self, config):
|
| 598 |
+
super().__init__()
|
| 599 |
+
self.config = config
|
| 600 |
+
self.layer = nn.ModuleList(
|
| 601 |
+
[RobertaLayer(config) for _ in range(config.num_hidden_layers)]
|
| 602 |
+
)
|
| 603 |
+
self.gradient_checkpointing = False
|
| 604 |
+
|
| 605 |
+
def forward(
|
| 606 |
+
self,
|
| 607 |
+
hidden_states: torch.Tensor,
|
| 608 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 609 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 610 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
| 611 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 612 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
| 613 |
+
use_cache: Optional[bool] = None,
|
| 614 |
+
output_attentions: Optional[bool] = False,
|
| 615 |
+
output_hidden_states: Optional[bool] = False,
|
| 616 |
+
return_dict: Optional[bool] = True,
|
| 617 |
+
parser_att_mask=None,
|
| 618 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
|
| 619 |
+
all_hidden_states = () if output_hidden_states else None
|
| 620 |
+
all_self_attentions = () if output_attentions else None
|
| 621 |
+
all_cross_attentions = (
|
| 622 |
+
() if output_attentions and self.config.add_cross_attention else None
|
| 623 |
+
)
|
| 624 |
+
|
| 625 |
+
next_decoder_cache = () if use_cache else None
|
| 626 |
+
for i, layer_module in enumerate(self.layer):
|
| 627 |
+
if output_hidden_states:
|
| 628 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 629 |
+
|
| 630 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
| 631 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
| 632 |
+
|
| 633 |
+
if self.gradient_checkpointing and self.training:
|
| 634 |
+
|
| 635 |
+
if use_cache:
|
| 636 |
+
logger.warning(
|
| 637 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
| 638 |
+
)
|
| 639 |
+
use_cache = False
|
| 640 |
+
|
| 641 |
+
def create_custom_forward(module):
|
| 642 |
+
def custom_forward(*inputs):
|
| 643 |
+
return module(*inputs, past_key_value, output_attentions)
|
| 644 |
+
|
| 645 |
+
return custom_forward
|
| 646 |
+
|
| 647 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
| 648 |
+
create_custom_forward(layer_module),
|
| 649 |
+
hidden_states,
|
| 650 |
+
attention_mask,
|
| 651 |
+
layer_head_mask,
|
| 652 |
+
encoder_hidden_states,
|
| 653 |
+
encoder_attention_mask,
|
| 654 |
+
)
|
| 655 |
+
else:
|
| 656 |
+
if parser_att_mask is not None:
|
| 657 |
+
layer_outputs = layer_module(
|
| 658 |
+
hidden_states,
|
| 659 |
+
attention_mask,
|
| 660 |
+
layer_head_mask,
|
| 661 |
+
encoder_hidden_states,
|
| 662 |
+
encoder_attention_mask,
|
| 663 |
+
past_key_value,
|
| 664 |
+
output_attentions,
|
| 665 |
+
parser_att_mask=parser_att_mask[i])
|
| 666 |
+
else:
|
| 667 |
+
layer_outputs = layer_module(
|
| 668 |
+
hidden_states,
|
| 669 |
+
attention_mask,
|
| 670 |
+
layer_head_mask,
|
| 671 |
+
encoder_hidden_states,
|
| 672 |
+
encoder_attention_mask,
|
| 673 |
+
past_key_value,
|
| 674 |
+
output_attentions,
|
| 675 |
+
parser_att_mask=None)
|
| 676 |
+
|
| 677 |
+
|
| 678 |
+
hidden_states = layer_outputs[0]
|
| 679 |
+
if use_cache:
|
| 680 |
+
next_decoder_cache += (layer_outputs[-1],)
|
| 681 |
+
if output_attentions:
|
| 682 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
| 683 |
+
if self.config.add_cross_attention:
|
| 684 |
+
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
|
| 685 |
+
|
| 686 |
+
if output_hidden_states:
|
| 687 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 688 |
+
|
| 689 |
+
if not return_dict:
|
| 690 |
+
return tuple(
|
| 691 |
+
v
|
| 692 |
+
for v in [
|
| 693 |
+
hidden_states,
|
| 694 |
+
next_decoder_cache,
|
| 695 |
+
all_hidden_states,
|
| 696 |
+
all_self_attentions,
|
| 697 |
+
all_cross_attentions,
|
| 698 |
+
]
|
| 699 |
+
if v is not None
|
| 700 |
+
)
|
| 701 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
| 702 |
+
last_hidden_state=hidden_states,
|
| 703 |
+
past_key_values=next_decoder_cache,
|
| 704 |
+
hidden_states=all_hidden_states,
|
| 705 |
+
attentions=all_self_attentions,
|
| 706 |
+
cross_attentions=all_cross_attentions,
|
| 707 |
+
)
|
| 708 |
+
|
| 709 |
+
|
| 710 |
+
# Copied from transformers.models.bert.modeling_bert.BertPooler
|
| 711 |
+
class RobertaPooler(nn.Module):
|
| 712 |
+
def __init__(self, config):
|
| 713 |
+
super().__init__()
|
| 714 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
| 715 |
+
self.activation = nn.Tanh()
|
| 716 |
+
|
| 717 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 718 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
| 719 |
+
# to the first token.
|
| 720 |
+
first_token_tensor = hidden_states[:, 0]
|
| 721 |
+
pooled_output = self.dense(first_token_tensor)
|
| 722 |
+
pooled_output = self.activation(pooled_output)
|
| 723 |
+
return pooled_output
|
| 724 |
+
|
| 725 |
+
|
| 726 |
+
class RobertaPreTrainedModel(PreTrainedModel):
|
| 727 |
+
"""
|
| 728 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
| 729 |
+
models.
|
| 730 |
+
"""
|
| 731 |
+
|
| 732 |
+
config_class = RobertaConfig
|
| 733 |
+
base_model_prefix = "roberta"
|
| 734 |
+
supports_gradient_checkpointing = True
|
| 735 |
+
|
| 736 |
+
# Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights
|
| 737 |
+
def _init_weights(self, module):
|
| 738 |
+
"""Initialize the weights"""
|
| 739 |
+
if isinstance(module, nn.Linear):
|
| 740 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
| 741 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
| 742 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 743 |
+
if module.bias is not None:
|
| 744 |
+
module.bias.data.zero_()
|
| 745 |
+
elif isinstance(module, nn.Embedding):
|
| 746 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 747 |
+
if module.padding_idx is not None:
|
| 748 |
+
module.weight.data[module.padding_idx].zero_()
|
| 749 |
+
elif isinstance(module, nn.LayerNorm):
|
| 750 |
+
if module.bias is not None:
|
| 751 |
+
module.bias.data.zero_()
|
| 752 |
+
module.weight.data.fill_(1.0)
|
| 753 |
+
|
| 754 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
| 755 |
+
if isinstance(module, RobertaEncoder):
|
| 756 |
+
module.gradient_checkpointing = value
|
| 757 |
+
|
| 758 |
+
def update_keys_to_ignore(self, config, del_keys_to_ignore):
|
| 759 |
+
"""Remove some keys from ignore list"""
|
| 760 |
+
if not config.tie_word_embeddings:
|
| 761 |
+
# must make a new list, or the class variable gets modified!
|
| 762 |
+
self._keys_to_ignore_on_save = [
|
| 763 |
+
k for k in self._keys_to_ignore_on_save if k not in del_keys_to_ignore
|
| 764 |
+
]
|
| 765 |
+
self._keys_to_ignore_on_load_missing = [
|
| 766 |
+
k
|
| 767 |
+
for k in self._keys_to_ignore_on_load_missing
|
| 768 |
+
if k not in del_keys_to_ignore
|
| 769 |
+
]
|
| 770 |
+
|
| 771 |
+
|
| 772 |
+
ROBERTA_START_DOCSTRING = r"""
|
| 773 |
+
|
| 774 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
| 775 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
| 776 |
+
etc.)
|
| 777 |
+
|
| 778 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
| 779 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
| 780 |
+
and behavior.
|
| 781 |
+
|
| 782 |
+
Parameters:
|
| 783 |
+
config ([`RobertaConfig`]): Model configuration class with all the parameters of the
|
| 784 |
+
model. Initializing with a config file does not load the weights associated with the model, only the
|
| 785 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
| 786 |
+
"""
|
| 787 |
+
|
| 788 |
+
|
| 789 |
+
ROBERTA_INPUTS_DOCSTRING = r"""
|
| 790 |
+
Args:
|
| 791 |
+
input_ids (`torch.LongTensor` of shape `({0})`):
|
| 792 |
+
Indices of input sequence tokens in the vocabulary.
|
| 793 |
+
|
| 794 |
+
Indices can be obtained using [`RobertaTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 795 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 796 |
+
|
| 797 |
+
[What are input IDs?](../glossary#input-ids)
|
| 798 |
+
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
| 799 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 800 |
+
|
| 801 |
+
- 1 for tokens that are **not masked**,
|
| 802 |
+
- 0 for tokens that are **masked**.
|
| 803 |
+
|
| 804 |
+
[What are attention masks?](../glossary#attention-mask)
|
| 805 |
+
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
| 806 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
| 807 |
+
1]`:
|
| 808 |
+
|
| 809 |
+
- 0 corresponds to a *sentence A* token,
|
| 810 |
+
- 1 corresponds to a *sentence B* token.
|
| 811 |
+
|
| 812 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
| 813 |
+
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
| 814 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
| 815 |
+
config.max_position_embeddings - 1]`.
|
| 816 |
+
|
| 817 |
+
[What are position IDs?](../glossary#position-ids)
|
| 818 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
| 819 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
| 820 |
+
|
| 821 |
+
- 1 indicates the head is **not masked**,
|
| 822 |
+
- 0 indicates the head is **masked**.
|
| 823 |
+
|
| 824 |
+
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
| 825 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
| 826 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
| 827 |
+
model's internal embedding lookup matrix.
|
| 828 |
+
output_attentions (`bool`, *optional*):
|
| 829 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 830 |
+
tensors for more detail.
|
| 831 |
+
output_hidden_states (`bool`, *optional*):
|
| 832 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 833 |
+
more detail.
|
| 834 |
+
return_dict (`bool`, *optional*):
|
| 835 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 836 |
+
"""
|
| 837 |
+
|
| 838 |
+
|
| 839 |
+
class RobertaModel(RobertaPreTrainedModel):
|
| 840 |
+
"""
|
| 841 |
+
|
| 842 |
+
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
|
| 843 |
+
cross-attention is added between the self-attention layers, following the architecture described in *Attention is
|
| 844 |
+
all you need*_ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
|
| 845 |
+
Kaiser and Illia Polosukhin.
|
| 846 |
+
|
| 847 |
+
To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
|
| 848 |
+
to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
|
| 849 |
+
`add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
|
| 850 |
+
|
| 851 |
+
.. _*Attention is all you need*: https://arxiv.org/abs/1706.03762
|
| 852 |
+
|
| 853 |
+
"""
|
| 854 |
+
|
| 855 |
+
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
| 856 |
+
|
| 857 |
+
# Copied from transformers.models.bert.modeling_bert.BertModel.__init__ with Bert->Roberta
|
| 858 |
+
def __init__(self, config, add_pooling_layer=True):
|
| 859 |
+
super().__init__(config)
|
| 860 |
+
self.config = config
|
| 861 |
+
|
| 862 |
+
self.embeddings = RobertaEmbeddings(config)
|
| 863 |
+
self.encoder = RobertaEncoder(config)
|
| 864 |
+
|
| 865 |
+
self.pooler = RobertaPooler(config) if add_pooling_layer else None
|
| 866 |
+
|
| 867 |
+
# Initialize weights and apply final processing
|
| 868 |
+
self.post_init()
|
| 869 |
+
|
| 870 |
+
def get_input_embeddings(self):
|
| 871 |
+
return self.embeddings.word_embeddings
|
| 872 |
+
|
| 873 |
+
def set_input_embeddings(self, value):
|
| 874 |
+
self.embeddings.word_embeddings = value
|
| 875 |
+
|
| 876 |
+
def _prune_heads(self, heads_to_prune):
|
| 877 |
+
"""
|
| 878 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
| 879 |
+
class PreTrainedModel
|
| 880 |
+
"""
|
| 881 |
+
for layer, heads in heads_to_prune.items():
|
| 882 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
| 883 |
+
|
| 884 |
+
# Copied from transformers.models.bert.modeling_bert.BertModel.forward
|
| 885 |
+
def forward(
|
| 886 |
+
self,
|
| 887 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 888 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 889 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
| 890 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 891 |
+
head_mask: Optional[torch.Tensor] = None,
|
| 892 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 893 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 894 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
| 895 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 896 |
+
use_cache: Optional[bool] = None,
|
| 897 |
+
output_attentions: Optional[bool] = None,
|
| 898 |
+
output_hidden_states: Optional[bool] = None,
|
| 899 |
+
return_dict: Optional[bool] = None,
|
| 900 |
+
parser_att_mask=None,
|
| 901 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
|
| 902 |
+
r"""
|
| 903 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
| 904 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
| 905 |
+
the model is configured as a decoder.
|
| 906 |
+
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 907 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
| 908 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
| 909 |
+
|
| 910 |
+
- 1 for tokens that are **not masked**,
|
| 911 |
+
- 0 for tokens that are **masked**.
|
| 912 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
| 913 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
| 914 |
+
|
| 915 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
| 916 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
| 917 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
| 918 |
+
use_cache (`bool`, *optional*):
|
| 919 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
| 920 |
+
`past_key_values`).
|
| 921 |
+
"""
|
| 922 |
+
output_attentions = (
|
| 923 |
+
output_attentions
|
| 924 |
+
if output_attentions is not None
|
| 925 |
+
else self.config.output_attentions
|
| 926 |
+
)
|
| 927 |
+
output_hidden_states = (
|
| 928 |
+
output_hidden_states
|
| 929 |
+
if output_hidden_states is not None
|
| 930 |
+
else self.config.output_hidden_states
|
| 931 |
+
)
|
| 932 |
+
return_dict = (
|
| 933 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
| 934 |
+
)
|
| 935 |
+
|
| 936 |
+
if self.config.is_decoder:
|
| 937 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 938 |
+
else:
|
| 939 |
+
use_cache = False
|
| 940 |
+
|
| 941 |
+
if input_ids is not None and inputs_embeds is not None:
|
| 942 |
+
raise ValueError(
|
| 943 |
+
"You cannot specify both input_ids and inputs_embeds at the same time"
|
| 944 |
+
)
|
| 945 |
+
elif input_ids is not None:
|
| 946 |
+
input_shape = input_ids.size()
|
| 947 |
+
elif inputs_embeds is not None:
|
| 948 |
+
input_shape = inputs_embeds.size()[:-1]
|
| 949 |
+
else:
|
| 950 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
| 951 |
+
|
| 952 |
+
batch_size, seq_length = input_shape
|
| 953 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
| 954 |
+
|
| 955 |
+
# past_key_values_length
|
| 956 |
+
past_key_values_length = (
|
| 957 |
+
past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
| 958 |
+
)
|
| 959 |
+
|
| 960 |
+
if attention_mask is None:
|
| 961 |
+
attention_mask = torch.ones(
|
| 962 |
+
((batch_size, seq_length + past_key_values_length)), device=device
|
| 963 |
+
)
|
| 964 |
+
|
| 965 |
+
if token_type_ids is None:
|
| 966 |
+
if hasattr(self.embeddings, "token_type_ids"):
|
| 967 |
+
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
|
| 968 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(
|
| 969 |
+
batch_size, seq_length
|
| 970 |
+
)
|
| 971 |
+
token_type_ids = buffered_token_type_ids_expanded
|
| 972 |
+
else:
|
| 973 |
+
token_type_ids = torch.zeros(
|
| 974 |
+
input_shape, dtype=torch.long, device=device
|
| 975 |
+
)
|
| 976 |
+
|
| 977 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
| 978 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
| 979 |
+
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(
|
| 980 |
+
attention_mask, input_shape, device
|
| 981 |
+
)
|
| 982 |
+
|
| 983 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
| 984 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
| 985 |
+
if self.config.is_decoder and encoder_hidden_states is not None:
|
| 986 |
+
(
|
| 987 |
+
encoder_batch_size,
|
| 988 |
+
encoder_sequence_length,
|
| 989 |
+
_,
|
| 990 |
+
) = encoder_hidden_states.size()
|
| 991 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
| 992 |
+
if encoder_attention_mask is None:
|
| 993 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
| 994 |
+
encoder_extended_attention_mask = self.invert_attention_mask(
|
| 995 |
+
encoder_attention_mask
|
| 996 |
+
)
|
| 997 |
+
else:
|
| 998 |
+
encoder_extended_attention_mask = None
|
| 999 |
+
|
| 1000 |
+
# Prepare head mask if needed
|
| 1001 |
+
# 1.0 in head_mask indicate we keep the head
|
| 1002 |
+
# attention_probs has shape bsz x n_heads x N x N
|
| 1003 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
| 1004 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
| 1005 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
| 1006 |
+
|
| 1007 |
+
embedding_output = self.embeddings(
|
| 1008 |
+
input_ids=input_ids,
|
| 1009 |
+
position_ids=position_ids,
|
| 1010 |
+
token_type_ids=token_type_ids,
|
| 1011 |
+
inputs_embeds=inputs_embeds,
|
| 1012 |
+
past_key_values_length=past_key_values_length,
|
| 1013 |
+
)
|
| 1014 |
+
encoder_outputs = self.encoder(
|
| 1015 |
+
embedding_output,
|
| 1016 |
+
attention_mask=extended_attention_mask,
|
| 1017 |
+
head_mask=head_mask,
|
| 1018 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 1019 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
| 1020 |
+
past_key_values=past_key_values,
|
| 1021 |
+
use_cache=use_cache,
|
| 1022 |
+
output_attentions=output_attentions,
|
| 1023 |
+
output_hidden_states=output_hidden_states,
|
| 1024 |
+
return_dict=return_dict,
|
| 1025 |
+
parser_att_mask=parser_att_mask,
|
| 1026 |
+
)
|
| 1027 |
+
sequence_output = encoder_outputs[0]
|
| 1028 |
+
pooled_output = (
|
| 1029 |
+
self.pooler(sequence_output) if self.pooler is not None else None
|
| 1030 |
+
)
|
| 1031 |
+
|
| 1032 |
+
if not return_dict:
|
| 1033 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
| 1034 |
+
|
| 1035 |
+
return BaseModelOutputWithPoolingAndCrossAttentions(
|
| 1036 |
+
last_hidden_state=sequence_output,
|
| 1037 |
+
pooler_output=pooled_output,
|
| 1038 |
+
past_key_values=encoder_outputs.past_key_values,
|
| 1039 |
+
hidden_states=encoder_outputs.hidden_states,
|
| 1040 |
+
attentions=encoder_outputs.attentions,
|
| 1041 |
+
cross_attentions=encoder_outputs.cross_attentions,
|
| 1042 |
+
)
|
| 1043 |
+
|
| 1044 |
+
|
| 1045 |
+
class StructRoberta(RobertaPreTrainedModel):
|
| 1046 |
+
_keys_to_ignore_on_save = [r"lm_head.decoder.weight", r"lm_head.decoder.bias"]
|
| 1047 |
+
_keys_to_ignore_on_load_missing = [
|
| 1048 |
+
r"position_ids",
|
| 1049 |
+
r"lm_head.decoder.weight",
|
| 1050 |
+
r"lm_head.decoder.bias",
|
| 1051 |
+
]
|
| 1052 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
| 1053 |
+
|
| 1054 |
+
def __init__(self, config):
|
| 1055 |
+
super().__init__(config)
|
| 1056 |
+
|
| 1057 |
+
if config.is_decoder:
|
| 1058 |
+
logger.warning(
|
| 1059 |
+
"If you want to use `RobertaForMaskedLM` make sure `config.is_decoder=False` for "
|
| 1060 |
+
"bi-directional self-attention."
|
| 1061 |
+
)
|
| 1062 |
+
|
| 1063 |
+
|
| 1064 |
+
if config.n_cntxt_layers > 0:
|
| 1065 |
+
config_cntxt = copy.deepcopy(config)
|
| 1066 |
+
config_cntxt.num_hidden_layers = config.n_cntxt_layers
|
| 1067 |
+
|
| 1068 |
+
self.cntxt_layers = RobertaModel(config_cntxt, add_pooling_layer=False)
|
| 1069 |
+
|
| 1070 |
+
if config.n_cntxt_layers_2 > 0:
|
| 1071 |
+
self.parser_layers_1 = nn.ModuleList(
|
| 1072 |
+
[
|
| 1073 |
+
nn.Sequential(
|
| 1074 |
+
Conv1d(config.hidden_size, config.conv_size),
|
| 1075 |
+
nn.LayerNorm(config.hidden_size, elementwise_affine=False),
|
| 1076 |
+
nn.Tanh(),
|
| 1077 |
+
)
|
| 1078 |
+
for i in range(int(config.n_parser_layers/2))
|
| 1079 |
+
]
|
| 1080 |
+
)
|
| 1081 |
+
|
| 1082 |
+
self.distance_ff_1 = nn.Sequential(
|
| 1083 |
+
Conv1d(config.hidden_size, 2),
|
| 1084 |
+
nn.LayerNorm(config.hidden_size, elementwise_affine=False),
|
| 1085 |
+
nn.Tanh(),
|
| 1086 |
+
nn.Linear(config.hidden_size, 1),
|
| 1087 |
+
)
|
| 1088 |
+
|
| 1089 |
+
self.height_ff_1 = nn.Sequential(
|
| 1090 |
+
nn.Linear(config.hidden_size, config.hidden_size),
|
| 1091 |
+
nn.LayerNorm(config.hidden_size, elementwise_affine=False),
|
| 1092 |
+
nn.Tanh(),
|
| 1093 |
+
nn.Linear(config.hidden_size, 1),
|
| 1094 |
+
)
|
| 1095 |
+
|
| 1096 |
+
n_rel = len(config.relations)
|
| 1097 |
+
self._rel_weight_1 = nn.Parameter(
|
| 1098 |
+
torch.zeros((config.n_cntxt_layers_2, config.num_attention_heads, n_rel))
|
| 1099 |
+
)
|
| 1100 |
+
self._rel_weight_1.data.normal_(0, 0.1)
|
| 1101 |
+
|
| 1102 |
+
self._scaler_1 = nn.Parameter(torch.zeros(2))
|
| 1103 |
+
|
| 1104 |
+
config_cntxt_2 = copy.deepcopy(config)
|
| 1105 |
+
config_cntxt_2.num_hidden_layers = config.n_cntxt_layers_2
|
| 1106 |
+
|
| 1107 |
+
self.cntxt_layers_2 = RobertaModel(config_cntxt_2, add_pooling_layer=False)
|
| 1108 |
+
|
| 1109 |
+
|
| 1110 |
+
self.parser_layers_2 = nn.ModuleList(
|
| 1111 |
+
[
|
| 1112 |
+
nn.Sequential(
|
| 1113 |
+
Conv1d(config.hidden_size, config.conv_size),
|
| 1114 |
+
nn.LayerNorm(config.hidden_size, elementwise_affine=False),
|
| 1115 |
+
nn.Tanh(),
|
| 1116 |
+
)
|
| 1117 |
+
for i in range(int(config.n_parser_layers/2))
|
| 1118 |
+
]
|
| 1119 |
+
)
|
| 1120 |
+
|
| 1121 |
+
self.distance_ff_2 = nn.Sequential(
|
| 1122 |
+
Conv1d(config.hidden_size, 2),
|
| 1123 |
+
nn.LayerNorm(config.hidden_size, elementwise_affine=False),
|
| 1124 |
+
nn.Tanh(),
|
| 1125 |
+
nn.Linear(config.hidden_size, 1),
|
| 1126 |
+
)
|
| 1127 |
+
|
| 1128 |
+
self.height_ff_2 = nn.Sequential(
|
| 1129 |
+
nn.Linear(config.hidden_size, config.hidden_size),
|
| 1130 |
+
nn.LayerNorm(config.hidden_size, elementwise_affine=False),
|
| 1131 |
+
nn.Tanh(),
|
| 1132 |
+
nn.Linear(config.hidden_size, 1),
|
| 1133 |
+
)
|
| 1134 |
+
|
| 1135 |
+
n_rel = len(config.relations)
|
| 1136 |
+
self._rel_weight_2 = nn.Parameter(
|
| 1137 |
+
torch.zeros((config.num_hidden_layers, config.num_attention_heads, n_rel))
|
| 1138 |
+
)
|
| 1139 |
+
self._rel_weight_2.data.normal_(0, 0.1)
|
| 1140 |
+
|
| 1141 |
+
self._scaler_2 = nn.Parameter(torch.zeros(2))
|
| 1142 |
+
|
| 1143 |
+
else:
|
| 1144 |
+
self.parser_layers = nn.ModuleList(
|
| 1145 |
+
[
|
| 1146 |
+
nn.Sequential(
|
| 1147 |
+
Conv1d(config.hidden_size, config.conv_size),
|
| 1148 |
+
nn.LayerNorm(config.hidden_size, elementwise_affine=False),
|
| 1149 |
+
nn.Tanh(),
|
| 1150 |
+
)
|
| 1151 |
+
for i in range(config.n_parser_layers)
|
| 1152 |
+
]
|
| 1153 |
+
)
|
| 1154 |
+
|
| 1155 |
+
self.distance_ff = nn.Sequential(
|
| 1156 |
+
Conv1d(config.hidden_size, 2),
|
| 1157 |
+
nn.LayerNorm(config.hidden_size, elementwise_affine=False),
|
| 1158 |
+
nn.Tanh(),
|
| 1159 |
+
nn.Linear(config.hidden_size, 1),
|
| 1160 |
+
)
|
| 1161 |
+
|
| 1162 |
+
self.height_ff = nn.Sequential(
|
| 1163 |
+
nn.Linear(config.hidden_size, config.hidden_size),
|
| 1164 |
+
nn.LayerNorm(config.hidden_size, elementwise_affine=False),
|
| 1165 |
+
nn.Tanh(),
|
| 1166 |
+
nn.Linear(config.hidden_size, 1),
|
| 1167 |
+
)
|
| 1168 |
+
|
| 1169 |
+
n_rel = len(config.relations)
|
| 1170 |
+
self._rel_weight = nn.Parameter(
|
| 1171 |
+
torch.zeros((config.num_hidden_layers, config.num_attention_heads, n_rel))
|
| 1172 |
+
)
|
| 1173 |
+
self._rel_weight.data.normal_(0, 0.1)
|
| 1174 |
+
|
| 1175 |
+
self._scaler = nn.Parameter(torch.zeros(2))
|
| 1176 |
+
|
| 1177 |
+
self.roberta = RobertaModel(config, add_pooling_layer=False)
|
| 1178 |
+
|
| 1179 |
+
if config.n_cntxt_layers > 0:
|
| 1180 |
+
self.cntxt_layers.embeddings = self.roberta.embeddings
|
| 1181 |
+
if config.n_cntxt_layers_2 > 0:
|
| 1182 |
+
self.cntxt_layers_2.embeddings = self.roberta.embeddings
|
| 1183 |
+
|
| 1184 |
+
self.lm_head = RobertaLMHead(config)
|
| 1185 |
+
|
| 1186 |
+
self.pad = config.pad_token_id
|
| 1187 |
+
|
| 1188 |
+
# The LM head weights require special treatment only when they are tied with the word embeddings
|
| 1189 |
+
self.update_keys_to_ignore(config, ["lm_head.decoder.weight"])
|
| 1190 |
+
|
| 1191 |
+
# Initialize weights and apply final processing
|
| 1192 |
+
self.post_init()
|
| 1193 |
+
|
| 1194 |
+
def get_output_embeddings(self):
|
| 1195 |
+
return self.lm_head.decoder
|
| 1196 |
+
|
| 1197 |
+
def set_output_embeddings(self, new_embeddings):
|
| 1198 |
+
self.lm_head.decoder = new_embeddings
|
| 1199 |
+
|
| 1200 |
+
@property
|
| 1201 |
+
def scaler(self):
|
| 1202 |
+
return self._scaler.exp()
|
| 1203 |
+
|
| 1204 |
+
@property
|
| 1205 |
+
def scaler_1(self):
|
| 1206 |
+
return self._scaler_1.exp()
|
| 1207 |
+
|
| 1208 |
+
@property
|
| 1209 |
+
def scaler_2(self):
|
| 1210 |
+
return self._scaler_2.exp()
|
| 1211 |
+
|
| 1212 |
+
@property
|
| 1213 |
+
def rel_weight(self):
|
| 1214 |
+
if self.config.weight_act == "sigmoid":
|
| 1215 |
+
return torch.sigmoid(self._rel_weight)
|
| 1216 |
+
elif self.config.weight_act == "softmax":
|
| 1217 |
+
return torch.softmax(self._rel_weight, dim=-1)
|
| 1218 |
+
|
| 1219 |
+
@property
|
| 1220 |
+
def rel_weight_1(self):
|
| 1221 |
+
if self.config.weight_act == "sigmoid":
|
| 1222 |
+
return torch.sigmoid(self._rel_weight_1)
|
| 1223 |
+
elif self.config.weight_act == "softmax":
|
| 1224 |
+
return torch.softmax(self._rel_weight_1, dim=-1)
|
| 1225 |
+
|
| 1226 |
+
|
| 1227 |
+
@property
|
| 1228 |
+
def rel_weight_2(self):
|
| 1229 |
+
if self.config.weight_act == "sigmoid":
|
| 1230 |
+
return torch.sigmoid(self._rel_weight_2)
|
| 1231 |
+
elif self.config.weight_act == "softmax":
|
| 1232 |
+
return torch.softmax(self._rel_weight_2, dim=-1)
|
| 1233 |
+
|
| 1234 |
+
|
| 1235 |
+
def compute_block(self, distance, height, n_cntxt_layers=0):
|
| 1236 |
+
"""Compute constituents from distance and height."""
|
| 1237 |
+
|
| 1238 |
+
if n_cntxt_layers>0:
|
| 1239 |
+
if n_cntxt_layers == 1:
|
| 1240 |
+
beta_logits = (distance[:, None, :] - height[:, :, None]) * self.scaler_1[0]
|
| 1241 |
+
elif n_cntxt_layers == 2:
|
| 1242 |
+
beta_logits = (distance[:, None, :] - height[:, :, None]) * self.scaler_2[0]
|
| 1243 |
+
else:
|
| 1244 |
+
beta_logits = (distance[:, None, :] - height[:, :, None]) * self.scaler[0]
|
| 1245 |
+
|
| 1246 |
+
gamma = torch.sigmoid(-beta_logits)
|
| 1247 |
+
ones = torch.ones_like(gamma)
|
| 1248 |
+
|
| 1249 |
+
block_mask_left = cummin(
|
| 1250 |
+
gamma.tril(-1) + ones.triu(0), reverse=True, max_value=1
|
| 1251 |
+
)
|
| 1252 |
+
block_mask_left = block_mask_left - F.pad(
|
| 1253 |
+
block_mask_left[:, :, :-1], (1, 0), value=0
|
| 1254 |
+
)
|
| 1255 |
+
block_mask_left.tril_(0)
|
| 1256 |
+
|
| 1257 |
+
block_mask_right = cummin(
|
| 1258 |
+
gamma.triu(0) + ones.tril(-1), exclusive=True, max_value=1
|
| 1259 |
+
)
|
| 1260 |
+
block_mask_right = block_mask_right - F.pad(
|
| 1261 |
+
block_mask_right[:, :, 1:], (0, 1), value=0
|
| 1262 |
+
)
|
| 1263 |
+
block_mask_right.triu_(0)
|
| 1264 |
+
|
| 1265 |
+
block_p = block_mask_left[:, :, :, None] * block_mask_right[:, :, None, :]
|
| 1266 |
+
block = cumsum(block_mask_left).tril(0) + cumsum(
|
| 1267 |
+
block_mask_right, reverse=True
|
| 1268 |
+
).triu(1)
|
| 1269 |
+
|
| 1270 |
+
return block_p, block
|
| 1271 |
+
|
| 1272 |
+
def compute_head(self, height, n_cntxt_layers=0):
|
| 1273 |
+
"""Estimate head for each constituent."""
|
| 1274 |
+
|
| 1275 |
+
_, length = height.size()
|
| 1276 |
+
if n_cntxt_layers>0:
|
| 1277 |
+
if n_cntxt_layers == 1:
|
| 1278 |
+
head_logits = height * self.scaler_1[1]
|
| 1279 |
+
elif n_cntxt_layers == 2:
|
| 1280 |
+
head_logits = height * self.scaler_2[1]
|
| 1281 |
+
else:
|
| 1282 |
+
head_logits = height * self.scaler[1]
|
| 1283 |
+
index = torch.arange(length, device=height.device)
|
| 1284 |
+
|
| 1285 |
+
mask = (index[:, None, None] <= index[None, None, :]) * (
|
| 1286 |
+
index[None, None, :] <= index[None, :, None]
|
| 1287 |
+
)
|
| 1288 |
+
head_logits = head_logits[:, None, None, :].repeat(1, length, length, 1)
|
| 1289 |
+
head_logits.masked_fill_(~mask[None, :, :, :], -1e9)
|
| 1290 |
+
|
| 1291 |
+
head_p = torch.softmax(head_logits, dim=-1)
|
| 1292 |
+
|
| 1293 |
+
return head_p
|
| 1294 |
+
|
| 1295 |
+
def parse(self, x, embs=None, n_cntxt_layers=0):
|
| 1296 |
+
"""Parse input sentence.
|
| 1297 |
+
|
| 1298 |
+
Args:
|
| 1299 |
+
x: input tokens (required).
|
| 1300 |
+
pos: position for each token (optional).
|
| 1301 |
+
Returns:
|
| 1302 |
+
distance: syntactic distance
|
| 1303 |
+
height: syntactic height
|
| 1304 |
+
"""
|
| 1305 |
+
|
| 1306 |
+
mask = x != self.pad
|
| 1307 |
+
mask_shifted = F.pad(mask[:, 1:], (0, 1), value=0)
|
| 1308 |
+
|
| 1309 |
+
if embs is None:
|
| 1310 |
+
h = self.roberta.embeddings(x)
|
| 1311 |
+
else:
|
| 1312 |
+
h = embs
|
| 1313 |
+
|
| 1314 |
+
if n_cntxt_layers > 0:
|
| 1315 |
+
if n_cntxt_layers == 1:
|
| 1316 |
+
parser_layers = self.parser_layers_1
|
| 1317 |
+
height_ff = self.height_ff_1
|
| 1318 |
+
distance_ff = self.distance_ff_1
|
| 1319 |
+
elif n_cntxt_layers == 2:
|
| 1320 |
+
parser_layers = self.parser_layers_2
|
| 1321 |
+
height_ff = self.height_ff_2
|
| 1322 |
+
distance_ff = self.distance_ff_2
|
| 1323 |
+
for i in range(int(self.config.n_parser_layers/2)):
|
| 1324 |
+
h = h.masked_fill(~mask[:, :, None], 0)
|
| 1325 |
+
h = parser_layers[i](h)
|
| 1326 |
+
|
| 1327 |
+
height = height_ff(h).squeeze(-1)
|
| 1328 |
+
height.masked_fill_(~mask, -1e9)
|
| 1329 |
+
|
| 1330 |
+
distance = distance_ff(h).squeeze(-1)
|
| 1331 |
+
distance.masked_fill_(~mask_shifted, 1e9)
|
| 1332 |
+
|
| 1333 |
+
# Calbrating the distance and height to the same level
|
| 1334 |
+
length = distance.size(1)
|
| 1335 |
+
height_max = height[:, None, :].expand(-1, length, -1)
|
| 1336 |
+
height_max = torch.cummax(
|
| 1337 |
+
height_max.triu(0) - torch.ones_like(height_max).tril(-1) * 1e9, dim=-1
|
| 1338 |
+
)[0].triu(0)
|
| 1339 |
+
|
| 1340 |
+
margin_left = torch.relu(
|
| 1341 |
+
F.pad(distance[:, :-1, None], (0, 0, 1, 0), value=1e9) - height_max
|
| 1342 |
+
)
|
| 1343 |
+
margin_right = torch.relu(distance[:, None, :] - height_max)
|
| 1344 |
+
margin = torch.where(
|
| 1345 |
+
margin_left > margin_right, margin_right, margin_left
|
| 1346 |
+
).triu(0)
|
| 1347 |
+
|
| 1348 |
+
margin_mask = torch.stack([mask_shifted] + [mask] * (length - 1), dim=1)
|
| 1349 |
+
margin.masked_fill_(~margin_mask, 0)
|
| 1350 |
+
margin = margin.max()
|
| 1351 |
+
|
| 1352 |
+
distance = distance - margin
|
| 1353 |
+
else:
|
| 1354 |
+
for i in range(self.config.n_parser_layers):
|
| 1355 |
+
h = h.masked_fill(~mask[:, :, None], 0)
|
| 1356 |
+
h = self.parser_layers[i](h)
|
| 1357 |
+
|
| 1358 |
+
height = self.height_ff(h).squeeze(-1)
|
| 1359 |
+
height.masked_fill_(~mask, -1e9)
|
| 1360 |
+
|
| 1361 |
+
distance = self.distance_ff(h).squeeze(-1)
|
| 1362 |
+
distance.masked_fill_(~mask_shifted, 1e9)
|
| 1363 |
+
|
| 1364 |
+
# Calbrating the distance and height to the same level
|
| 1365 |
+
length = distance.size(1)
|
| 1366 |
+
height_max = height[:, None, :].expand(-1, length, -1)
|
| 1367 |
+
height_max = torch.cummax(
|
| 1368 |
+
height_max.triu(0) - torch.ones_like(height_max).tril(-1) * 1e9, dim=-1
|
| 1369 |
+
)[0].triu(0)
|
| 1370 |
+
|
| 1371 |
+
margin_left = torch.relu(
|
| 1372 |
+
F.pad(distance[:, :-1, None], (0, 0, 1, 0), value=1e9) - height_max
|
| 1373 |
+
)
|
| 1374 |
+
margin_right = torch.relu(distance[:, None, :] - height_max)
|
| 1375 |
+
margin = torch.where(
|
| 1376 |
+
margin_left > margin_right, margin_right, margin_left
|
| 1377 |
+
).triu(0)
|
| 1378 |
+
|
| 1379 |
+
margin_mask = torch.stack([mask_shifted] + [mask] * (length - 1), dim=1)
|
| 1380 |
+
margin.masked_fill_(~margin_mask, 0)
|
| 1381 |
+
margin = margin.max()
|
| 1382 |
+
|
| 1383 |
+
distance = distance - margin
|
| 1384 |
+
|
| 1385 |
+
return distance, height
|
| 1386 |
+
|
| 1387 |
+
def generate_mask(self, x, distance, height, n_cntxt_layers=0):
|
| 1388 |
+
"""Compute head and cibling distribution for each token."""
|
| 1389 |
+
|
| 1390 |
+
bsz, length = x.size()
|
| 1391 |
+
|
| 1392 |
+
eye = torch.eye(length, device=x.device, dtype=torch.bool)
|
| 1393 |
+
eye = eye[None, :, :].expand((bsz, -1, -1))
|
| 1394 |
+
|
| 1395 |
+
block_p, block = self.compute_block(distance, height, n_cntxt_layers=n_cntxt_layers)
|
| 1396 |
+
head_p = self.compute_head(height, n_cntxt_layers=n_cntxt_layers)
|
| 1397 |
+
head = torch.einsum("blij,bijh->blh", block_p, head_p)
|
| 1398 |
+
head = head.masked_fill(eye, 0)
|
| 1399 |
+
child = head.transpose(1, 2)
|
| 1400 |
+
cibling = torch.bmm(head, child).masked_fill(eye, 0)
|
| 1401 |
+
|
| 1402 |
+
rel_list = []
|
| 1403 |
+
if "head" in self.config.relations:
|
| 1404 |
+
rel_list.append(head)
|
| 1405 |
+
if "child" in self.config.relations:
|
| 1406 |
+
rel_list.append(child)
|
| 1407 |
+
if "cibling" in self.config.relations:
|
| 1408 |
+
rel_list.append(cibling)
|
| 1409 |
+
|
| 1410 |
+
rel = torch.stack(rel_list, dim=1)
|
| 1411 |
+
|
| 1412 |
+
if n_cntxt_layers > 0:
|
| 1413 |
+
if n_cntxt_layers == 1:
|
| 1414 |
+
rel_weight = self.rel_weight_1
|
| 1415 |
+
elif n_cntxt_layers == 2:
|
| 1416 |
+
rel_weight = self.rel_weight_2
|
| 1417 |
+
else:
|
| 1418 |
+
rel_weight = self.rel_weight
|
| 1419 |
+
|
| 1420 |
+
dep = torch.einsum("lhr,brij->lbhij", rel_weight, rel)
|
| 1421 |
+
|
| 1422 |
+
if n_cntxt_layers == 1:
|
| 1423 |
+
num_layers = self.cntxt_layers_2.config.num_hidden_layers
|
| 1424 |
+
else:
|
| 1425 |
+
num_layers = self.roberta.config.num_hidden_layers
|
| 1426 |
+
|
| 1427 |
+
att_mask = dep.reshape(
|
| 1428 |
+
num_layers,
|
| 1429 |
+
bsz,
|
| 1430 |
+
self.config.num_attention_heads,
|
| 1431 |
+
length,
|
| 1432 |
+
length,
|
| 1433 |
+
)
|
| 1434 |
+
|
| 1435 |
+
return att_mask, cibling, head, block
|
| 1436 |
+
|
| 1437 |
+
def forward(
|
| 1438 |
+
self,
|
| 1439 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 1440 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 1441 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
| 1442 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1443 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 1444 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1445 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
| 1446 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 1447 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1448 |
+
output_attentions: Optional[bool] = None,
|
| 1449 |
+
output_hidden_states: Optional[bool] = None,
|
| 1450 |
+
return_dict: Optional[bool] = None,
|
| 1451 |
+
) -> Union[Tuple, MaskedLMOutput]:
|
| 1452 |
+
r"""
|
| 1453 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1454 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
| 1455 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
|
| 1456 |
+
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
| 1457 |
+
kwargs (`Dict[str, any]`, optional, defaults to *{}*):
|
| 1458 |
+
Used to hide legacy arguments that have been deprecated.
|
| 1459 |
+
"""
|
| 1460 |
+
return_dict = (
|
| 1461 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
| 1462 |
+
)
|
| 1463 |
+
|
| 1464 |
+
|
| 1465 |
+
if self.config.n_cntxt_layers > 0:
|
| 1466 |
+
cntxt_outputs = self.cntxt_layers(
|
| 1467 |
+
input_ids,
|
| 1468 |
+
attention_mask=attention_mask,
|
| 1469 |
+
token_type_ids=token_type_ids,
|
| 1470 |
+
position_ids=position_ids,
|
| 1471 |
+
head_mask=head_mask,
|
| 1472 |
+
inputs_embeds=inputs_embeds,
|
| 1473 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 1474 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 1475 |
+
output_attentions=output_attentions,
|
| 1476 |
+
output_hidden_states=output_hidden_states,
|
| 1477 |
+
return_dict=return_dict)
|
| 1478 |
+
|
| 1479 |
+
|
| 1480 |
+
if self.config.n_cntxt_layers_2 > 0:
|
| 1481 |
+
distance_1, height_1 = self.parse(input_ids, cntxt_outputs[0], n_cntxt_layers=1)
|
| 1482 |
+
att_mask_1, _, _, _ = self.generate_mask(input_ids, distance_1, height_1, n_cntxt_layers=1)
|
| 1483 |
+
|
| 1484 |
+
cntxt_outputs_2 = self.cntxt_layers_2(
|
| 1485 |
+
input_ids,
|
| 1486 |
+
attention_mask=attention_mask,
|
| 1487 |
+
token_type_ids=token_type_ids,
|
| 1488 |
+
position_ids=position_ids,
|
| 1489 |
+
head_mask=head_mask,
|
| 1490 |
+
inputs_embeds=inputs_embeds,
|
| 1491 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 1492 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 1493 |
+
output_attentions=output_attentions,
|
| 1494 |
+
output_hidden_states=output_hidden_states,
|
| 1495 |
+
return_dict=return_dict,
|
| 1496 |
+
parser_att_mask=att_mask_1)
|
| 1497 |
+
|
| 1498 |
+
sequence_output = cntxt_outputs_2[0]
|
| 1499 |
+
|
| 1500 |
+
distance_2, height_2 = self.parse(input_ids, sequence_output[0], n_cntxt_layers=2)
|
| 1501 |
+
att_mask, _, _, _ = self.generate_mask(input_ids, distance_2, height_2, n_cntxt_layers=2)
|
| 1502 |
+
|
| 1503 |
+
elif self.config.n_cntxt_layers > 0:
|
| 1504 |
+
distance, height = self.parse(input_ids, cntxt_outputs[0])
|
| 1505 |
+
att_mask, _, _, _ = self.generate_mask(input_ids, distance, height)
|
| 1506 |
+
else:
|
| 1507 |
+
distance, height = self.parse(input_ids)
|
| 1508 |
+
att_mask, _, _, _ = self.generate_mask(input_ids, distance, height)
|
| 1509 |
+
|
| 1510 |
+
outputs = self.roberta(
|
| 1511 |
+
input_ids,
|
| 1512 |
+
attention_mask=attention_mask,
|
| 1513 |
+
token_type_ids=token_type_ids,
|
| 1514 |
+
position_ids=position_ids,
|
| 1515 |
+
head_mask=head_mask,
|
| 1516 |
+
inputs_embeds=inputs_embeds,
|
| 1517 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 1518 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 1519 |
+
output_attentions=output_attentions,
|
| 1520 |
+
output_hidden_states=output_hidden_states,
|
| 1521 |
+
return_dict=return_dict,
|
| 1522 |
+
parser_att_mask=att_mask,
|
| 1523 |
+
)
|
| 1524 |
+
sequence_output = outputs[0]
|
| 1525 |
+
prediction_scores = self.lm_head(sequence_output)
|
| 1526 |
+
|
| 1527 |
+
masked_lm_loss = None
|
| 1528 |
+
if labels is not None:
|
| 1529 |
+
loss_fct = CrossEntropyLoss()
|
| 1530 |
+
masked_lm_loss = loss_fct(
|
| 1531 |
+
prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)
|
| 1532 |
+
)
|
| 1533 |
+
|
| 1534 |
+
if not return_dict:
|
| 1535 |
+
output = (prediction_scores,) + outputs[2:]
|
| 1536 |
+
return (
|
| 1537 |
+
((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
| 1538 |
+
)
|
| 1539 |
+
|
| 1540 |
+
return MaskedLMOutput(
|
| 1541 |
+
loss=masked_lm_loss,
|
| 1542 |
+
logits=prediction_scores,
|
| 1543 |
+
hidden_states=outputs.hidden_states,
|
| 1544 |
+
attentions=outputs.attentions,
|
| 1545 |
+
)
|
| 1546 |
+
|
| 1547 |
+
|
| 1548 |
+
class RobertaLMHead(nn.Module):
|
| 1549 |
+
"""Roberta Head for masked language modeling."""
|
| 1550 |
+
|
| 1551 |
+
def __init__(self, config):
|
| 1552 |
+
super().__init__()
|
| 1553 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
| 1554 |
+
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 1555 |
+
|
| 1556 |
+
self.decoder = nn.Linear(config.hidden_size, config.vocab_size)
|
| 1557 |
+
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
| 1558 |
+
self.decoder.bias = self.bias
|
| 1559 |
+
|
| 1560 |
+
def forward(self, features, **kwargs):
|
| 1561 |
+
x = self.dense(features)
|
| 1562 |
+
x = gelu(x)
|
| 1563 |
+
x = self.layer_norm(x)
|
| 1564 |
+
|
| 1565 |
+
# project back to size of vocabulary with bias
|
| 1566 |
+
x = self.decoder(x)
|
| 1567 |
+
|
| 1568 |
+
return x
|
| 1569 |
+
|
| 1570 |
+
def _tie_weights(self):
|
| 1571 |
+
# To tie those two weights if they get disconnected (on TPU or when the bias is resized)
|
| 1572 |
+
self.bias = self.decoder.bias
|
| 1573 |
+
|
| 1574 |
+
|
| 1575 |
+
class StructRobertaForSequenceClassification(RobertaPreTrainedModel):
|
| 1576 |
+
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
| 1577 |
+
|
| 1578 |
+
def __init__(self, config):
|
| 1579 |
+
super().__init__(config)
|
| 1580 |
+
self.num_labels = config.num_labels
|
| 1581 |
+
self.config = config
|
| 1582 |
+
|
| 1583 |
+
if config.n_cntxt_layers > 0:
|
| 1584 |
+
config_cntxt = copy.deepcopy(config)
|
| 1585 |
+
config_cntxt.num_hidden_layers = config.n_cntxt_layers
|
| 1586 |
+
|
| 1587 |
+
self.cntxt_layers = RobertaModel(config_cntxt, add_pooling_layer=False)
|
| 1588 |
+
|
| 1589 |
+
if config.n_cntxt_layers_2 > 0:
|
| 1590 |
+
self.parser_layers_1 = nn.ModuleList(
|
| 1591 |
+
[
|
| 1592 |
+
nn.Sequential(
|
| 1593 |
+
Conv1d(config.hidden_size, config.conv_size),
|
| 1594 |
+
nn.LayerNorm(config.hidden_size, elementwise_affine=False),
|
| 1595 |
+
nn.Tanh(),
|
| 1596 |
+
)
|
| 1597 |
+
for i in range(int(config.n_parser_layers/2))
|
| 1598 |
+
]
|
| 1599 |
+
)
|
| 1600 |
+
|
| 1601 |
+
self.distance_ff_1 = nn.Sequential(
|
| 1602 |
+
Conv1d(config.hidden_size, 2),
|
| 1603 |
+
nn.LayerNorm(config.hidden_size, elementwise_affine=False),
|
| 1604 |
+
nn.Tanh(),
|
| 1605 |
+
nn.Linear(config.hidden_size, 1),
|
| 1606 |
+
)
|
| 1607 |
+
|
| 1608 |
+
self.height_ff_1 = nn.Sequential(
|
| 1609 |
+
nn.Linear(config.hidden_size, config.hidden_size),
|
| 1610 |
+
nn.LayerNorm(config.hidden_size, elementwise_affine=False),
|
| 1611 |
+
nn.Tanh(),
|
| 1612 |
+
nn.Linear(config.hidden_size, 1),
|
| 1613 |
+
)
|
| 1614 |
+
|
| 1615 |
+
n_rel = len(config.relations)
|
| 1616 |
+
self._rel_weight_1 = nn.Parameter(
|
| 1617 |
+
torch.zeros((config.n_cntxt_layers_2, config.num_attention_heads, n_rel))
|
| 1618 |
+
)
|
| 1619 |
+
self._rel_weight_1.data.normal_(0, 0.1)
|
| 1620 |
+
|
| 1621 |
+
self._scaler_1 = nn.Parameter(torch.zeros(2))
|
| 1622 |
+
|
| 1623 |
+
config_cntxt_2 = copy.deepcopy(config)
|
| 1624 |
+
config_cntxt_2.num_hidden_layers = config.n_cntxt_layers_2
|
| 1625 |
+
|
| 1626 |
+
self.cntxt_layers_2 = RobertaModel(config_cntxt_2, add_pooling_layer=False)
|
| 1627 |
+
|
| 1628 |
+
|
| 1629 |
+
self.parser_layers_2 = nn.ModuleList(
|
| 1630 |
+
[
|
| 1631 |
+
nn.Sequential(
|
| 1632 |
+
Conv1d(config.hidden_size, config.conv_size),
|
| 1633 |
+
nn.LayerNorm(config.hidden_size, elementwise_affine=False),
|
| 1634 |
+
nn.Tanh(),
|
| 1635 |
+
)
|
| 1636 |
+
for i in range(int(config.n_parser_layers/2))
|
| 1637 |
+
]
|
| 1638 |
+
)
|
| 1639 |
+
|
| 1640 |
+
self.distance_ff_2 = nn.Sequential(
|
| 1641 |
+
Conv1d(config.hidden_size, 2),
|
| 1642 |
+
nn.LayerNorm(config.hidden_size, elementwise_affine=False),
|
| 1643 |
+
nn.Tanh(),
|
| 1644 |
+
nn.Linear(config.hidden_size, 1),
|
| 1645 |
+
)
|
| 1646 |
+
|
| 1647 |
+
self.height_ff_2 = nn.Sequential(
|
| 1648 |
+
nn.Linear(config.hidden_size, config.hidden_size),
|
| 1649 |
+
nn.LayerNorm(config.hidden_size, elementwise_affine=False),
|
| 1650 |
+
nn.Tanh(),
|
| 1651 |
+
nn.Linear(config.hidden_size, 1),
|
| 1652 |
+
)
|
| 1653 |
+
|
| 1654 |
+
n_rel = len(config.relations)
|
| 1655 |
+
self._rel_weight_2 = nn.Parameter(
|
| 1656 |
+
torch.zeros((config.num_hidden_layers, config.num_attention_heads, n_rel))
|
| 1657 |
+
)
|
| 1658 |
+
self._rel_weight_2.data.normal_(0, 0.1)
|
| 1659 |
+
|
| 1660 |
+
self._scaler_2 = nn.Parameter(torch.zeros(2))
|
| 1661 |
+
|
| 1662 |
+
else:
|
| 1663 |
+
self.parser_layers = nn.ModuleList(
|
| 1664 |
+
[
|
| 1665 |
+
nn.Sequential(
|
| 1666 |
+
Conv1d(config.hidden_size, config.conv_size),
|
| 1667 |
+
nn.LayerNorm(config.hidden_size, elementwise_affine=False),
|
| 1668 |
+
nn.Tanh(),
|
| 1669 |
+
)
|
| 1670 |
+
for i in range(config.n_parser_layers)
|
| 1671 |
+
]
|
| 1672 |
+
)
|
| 1673 |
+
|
| 1674 |
+
self.distance_ff = nn.Sequential(
|
| 1675 |
+
Conv1d(config.hidden_size, 2),
|
| 1676 |
+
nn.LayerNorm(config.hidden_size, elementwise_affine=False),
|
| 1677 |
+
nn.Tanh(),
|
| 1678 |
+
nn.Linear(config.hidden_size, 1),
|
| 1679 |
+
)
|
| 1680 |
+
|
| 1681 |
+
self.height_ff = nn.Sequential(
|
| 1682 |
+
nn.Linear(config.hidden_size, config.hidden_size),
|
| 1683 |
+
nn.LayerNorm(config.hidden_size, elementwise_affine=False),
|
| 1684 |
+
nn.Tanh(),
|
| 1685 |
+
nn.Linear(config.hidden_size, 1),
|
| 1686 |
+
)
|
| 1687 |
+
|
| 1688 |
+
n_rel = len(config.relations)
|
| 1689 |
+
self._rel_weight = nn.Parameter(
|
| 1690 |
+
torch.zeros((config.num_hidden_layers, config.num_attention_heads, n_rel))
|
| 1691 |
+
)
|
| 1692 |
+
self._rel_weight.data.normal_(0, 0.1)
|
| 1693 |
+
|
| 1694 |
+
self._scaler = nn.Parameter(torch.zeros(2))
|
| 1695 |
+
|
| 1696 |
+
self.roberta = RobertaModel(config, add_pooling_layer=False)
|
| 1697 |
+
|
| 1698 |
+
if config.n_cntxt_layers > 0:
|
| 1699 |
+
self.cntxt_layers.embeddings = self.roberta.embeddings
|
| 1700 |
+
if config.n_cntxt_layers_2 > 0:
|
| 1701 |
+
self.cntxt_layers_2.embeddings = self.roberta.embeddings
|
| 1702 |
+
|
| 1703 |
+
|
| 1704 |
+
self.pad = config.pad_token_id
|
| 1705 |
+
self.classifier = RobertaClassificationHead(config)
|
| 1706 |
+
|
| 1707 |
+
# Initialize weights and apply final processing
|
| 1708 |
+
self.post_init()
|
| 1709 |
+
|
| 1710 |
+
|
| 1711 |
+
@property
|
| 1712 |
+
def scaler(self):
|
| 1713 |
+
return self._scaler.exp()
|
| 1714 |
+
|
| 1715 |
+
@property
|
| 1716 |
+
def scaler_1(self):
|
| 1717 |
+
return self._scaler_1.exp()
|
| 1718 |
+
|
| 1719 |
+
@property
|
| 1720 |
+
def scaler_2(self):
|
| 1721 |
+
return self._scaler_2.exp()
|
| 1722 |
+
|
| 1723 |
+
@property
|
| 1724 |
+
def rel_weight(self):
|
| 1725 |
+
if self.config.weight_act == "sigmoid":
|
| 1726 |
+
return torch.sigmoid(self._rel_weight)
|
| 1727 |
+
elif self.config.weight_act == "softmax":
|
| 1728 |
+
return torch.softmax(self._rel_weight, dim=-1)
|
| 1729 |
+
|
| 1730 |
+
@property
|
| 1731 |
+
def rel_weight_1(self):
|
| 1732 |
+
if self.config.weight_act == "sigmoid":
|
| 1733 |
+
return torch.sigmoid(self._rel_weight_1)
|
| 1734 |
+
elif self.config.weight_act == "softmax":
|
| 1735 |
+
return torch.softmax(self._rel_weight_1, dim=-1)
|
| 1736 |
+
|
| 1737 |
+
|
| 1738 |
+
@property
|
| 1739 |
+
def rel_weight_2(self):
|
| 1740 |
+
if self.config.weight_act == "sigmoid":
|
| 1741 |
+
return torch.sigmoid(self._rel_weight_2)
|
| 1742 |
+
elif self.config.weight_act == "softmax":
|
| 1743 |
+
return torch.softmax(self._rel_weight_2, dim=-1)
|
| 1744 |
+
|
| 1745 |
+
|
| 1746 |
+
def compute_block(self, distance, height, n_cntxt_layers=0):
|
| 1747 |
+
"""Compute constituents from distance and height."""
|
| 1748 |
+
|
| 1749 |
+
if n_cntxt_layers>0:
|
| 1750 |
+
if n_cntxt_layers == 1:
|
| 1751 |
+
beta_logits = (distance[:, None, :] - height[:, :, None]) * self.scaler_1[0]
|
| 1752 |
+
elif n_cntxt_layers == 2:
|
| 1753 |
+
beta_logits = (distance[:, None, :] - height[:, :, None]) * self.scaler_2[0]
|
| 1754 |
+
else:
|
| 1755 |
+
beta_logits = (distance[:, None, :] - height[:, :, None]) * self.scaler[0]
|
| 1756 |
+
|
| 1757 |
+
gamma = torch.sigmoid(-beta_logits)
|
| 1758 |
+
ones = torch.ones_like(gamma)
|
| 1759 |
+
|
| 1760 |
+
block_mask_left = cummin(
|
| 1761 |
+
gamma.tril(-1) + ones.triu(0), reverse=True, max_value=1
|
| 1762 |
+
)
|
| 1763 |
+
block_mask_left = block_mask_left - F.pad(
|
| 1764 |
+
block_mask_left[:, :, :-1], (1, 0), value=0
|
| 1765 |
+
)
|
| 1766 |
+
block_mask_left.tril_(0)
|
| 1767 |
+
|
| 1768 |
+
block_mask_right = cummin(
|
| 1769 |
+
gamma.triu(0) + ones.tril(-1), exclusive=True, max_value=1
|
| 1770 |
+
)
|
| 1771 |
+
block_mask_right = block_mask_right - F.pad(
|
| 1772 |
+
block_mask_right[:, :, 1:], (0, 1), value=0
|
| 1773 |
+
)
|
| 1774 |
+
block_mask_right.triu_(0)
|
| 1775 |
+
|
| 1776 |
+
block_p = block_mask_left[:, :, :, None] * block_mask_right[:, :, None, :]
|
| 1777 |
+
block = cumsum(block_mask_left).tril(0) + cumsum(
|
| 1778 |
+
block_mask_right, reverse=True
|
| 1779 |
+
).triu(1)
|
| 1780 |
+
|
| 1781 |
+
return block_p, block
|
| 1782 |
+
|
| 1783 |
+
def compute_head(self, height, n_cntxt_layers=0):
|
| 1784 |
+
"""Estimate head for each constituent."""
|
| 1785 |
+
|
| 1786 |
+
_, length = height.size()
|
| 1787 |
+
if n_cntxt_layers>0:
|
| 1788 |
+
if n_cntxt_layers == 1:
|
| 1789 |
+
head_logits = height * self.scaler_1[1]
|
| 1790 |
+
elif n_cntxt_layers == 2:
|
| 1791 |
+
head_logits = height * self.scaler_2[1]
|
| 1792 |
+
else:
|
| 1793 |
+
head_logits = height * self.scaler[1]
|
| 1794 |
+
index = torch.arange(length, device=height.device)
|
| 1795 |
+
|
| 1796 |
+
mask = (index[:, None, None] <= index[None, None, :]) * (
|
| 1797 |
+
index[None, None, :] <= index[None, :, None]
|
| 1798 |
+
)
|
| 1799 |
+
head_logits = head_logits[:, None, None, :].repeat(1, length, length, 1)
|
| 1800 |
+
head_logits.masked_fill_(~mask[None, :, :, :], -1e9)
|
| 1801 |
+
|
| 1802 |
+
head_p = torch.softmax(head_logits, dim=-1)
|
| 1803 |
+
|
| 1804 |
+
return head_p
|
| 1805 |
+
|
| 1806 |
+
def parse(self, x, embs=None, n_cntxt_layers=0):
|
| 1807 |
+
"""Parse input sentence.
|
| 1808 |
+
|
| 1809 |
+
Args:
|
| 1810 |
+
x: input tokens (required).
|
| 1811 |
+
pos: position for each token (optional).
|
| 1812 |
+
Returns:
|
| 1813 |
+
distance: syntactic distance
|
| 1814 |
+
height: syntactic height
|
| 1815 |
+
"""
|
| 1816 |
+
|
| 1817 |
+
mask = x != self.pad
|
| 1818 |
+
mask_shifted = F.pad(mask[:, 1:], (0, 1), value=0)
|
| 1819 |
+
|
| 1820 |
+
if embs is None:
|
| 1821 |
+
h = self.roberta.embeddings(x)
|
| 1822 |
+
else:
|
| 1823 |
+
h = embs
|
| 1824 |
+
|
| 1825 |
+
if n_cntxt_layers > 0:
|
| 1826 |
+
if n_cntxt_layers == 1:
|
| 1827 |
+
parser_layers = self.parser_layers_1
|
| 1828 |
+
height_ff = self.height_ff_1
|
| 1829 |
+
distance_ff = self.distance_ff_1
|
| 1830 |
+
elif n_cntxt_layers == 2:
|
| 1831 |
+
parser_layers = self.parser_layers_2
|
| 1832 |
+
height_ff = self.height_ff_2
|
| 1833 |
+
distance_ff = self.distance_ff_2
|
| 1834 |
+
for i in range(int(self.config.n_parser_layers/2)):
|
| 1835 |
+
h = h.masked_fill(~mask[:, :, None], 0)
|
| 1836 |
+
h = parser_layers[i](h)
|
| 1837 |
+
|
| 1838 |
+
height = height_ff(h).squeeze(-1)
|
| 1839 |
+
height.masked_fill_(~mask, -1e9)
|
| 1840 |
+
|
| 1841 |
+
distance = distance_ff(h).squeeze(-1)
|
| 1842 |
+
distance.masked_fill_(~mask_shifted, 1e9)
|
| 1843 |
+
|
| 1844 |
+
# Calbrating the distance and height to the same level
|
| 1845 |
+
length = distance.size(1)
|
| 1846 |
+
height_max = height[:, None, :].expand(-1, length, -1)
|
| 1847 |
+
height_max = torch.cummax(
|
| 1848 |
+
height_max.triu(0) - torch.ones_like(height_max).tril(-1) * 1e9, dim=-1
|
| 1849 |
+
)[0].triu(0)
|
| 1850 |
+
|
| 1851 |
+
margin_left = torch.relu(
|
| 1852 |
+
F.pad(distance[:, :-1, None], (0, 0, 1, 0), value=1e9) - height_max
|
| 1853 |
+
)
|
| 1854 |
+
margin_right = torch.relu(distance[:, None, :] - height_max)
|
| 1855 |
+
margin = torch.where(
|
| 1856 |
+
margin_left > margin_right, margin_right, margin_left
|
| 1857 |
+
).triu(0)
|
| 1858 |
+
|
| 1859 |
+
margin_mask = torch.stack([mask_shifted] + [mask] * (length - 1), dim=1)
|
| 1860 |
+
margin.masked_fill_(~margin_mask, 0)
|
| 1861 |
+
margin = margin.max()
|
| 1862 |
+
|
| 1863 |
+
distance = distance - margin
|
| 1864 |
+
else:
|
| 1865 |
+
for i in range(self.config.n_parser_layers):
|
| 1866 |
+
h = h.masked_fill(~mask[:, :, None], 0)
|
| 1867 |
+
h = self.parser_layers[i](h)
|
| 1868 |
+
|
| 1869 |
+
height = self.height_ff(h).squeeze(-1)
|
| 1870 |
+
height.masked_fill_(~mask, -1e9)
|
| 1871 |
+
|
| 1872 |
+
distance = self.distance_ff(h).squeeze(-1)
|
| 1873 |
+
distance.masked_fill_(~mask_shifted, 1e9)
|
| 1874 |
+
|
| 1875 |
+
# Calbrating the distance and height to the same level
|
| 1876 |
+
length = distance.size(1)
|
| 1877 |
+
height_max = height[:, None, :].expand(-1, length, -1)
|
| 1878 |
+
height_max = torch.cummax(
|
| 1879 |
+
height_max.triu(0) - torch.ones_like(height_max).tril(-1) * 1e9, dim=-1
|
| 1880 |
+
)[0].triu(0)
|
| 1881 |
+
|
| 1882 |
+
margin_left = torch.relu(
|
| 1883 |
+
F.pad(distance[:, :-1, None], (0, 0, 1, 0), value=1e9) - height_max
|
| 1884 |
+
)
|
| 1885 |
+
margin_right = torch.relu(distance[:, None, :] - height_max)
|
| 1886 |
+
margin = torch.where(
|
| 1887 |
+
margin_left > margin_right, margin_right, margin_left
|
| 1888 |
+
).triu(0)
|
| 1889 |
+
|
| 1890 |
+
margin_mask = torch.stack([mask_shifted] + [mask] * (length - 1), dim=1)
|
| 1891 |
+
margin.masked_fill_(~margin_mask, 0)
|
| 1892 |
+
margin = margin.max()
|
| 1893 |
+
|
| 1894 |
+
distance = distance - margin
|
| 1895 |
+
|
| 1896 |
+
return distance, height
|
| 1897 |
+
|
| 1898 |
+
def generate_mask(self, x, distance, height, n_cntxt_layers=0):
|
| 1899 |
+
"""Compute head and cibling distribution for each token."""
|
| 1900 |
+
|
| 1901 |
+
bsz, length = x.size()
|
| 1902 |
+
|
| 1903 |
+
eye = torch.eye(length, device=x.device, dtype=torch.bool)
|
| 1904 |
+
eye = eye[None, :, :].expand((bsz, -1, -1))
|
| 1905 |
+
|
| 1906 |
+
block_p, block = self.compute_block(distance, height, n_cntxt_layers=n_cntxt_layers)
|
| 1907 |
+
head_p = self.compute_head(height, n_cntxt_layers=n_cntxt_layers)
|
| 1908 |
+
head = torch.einsum("blij,bijh->blh", block_p, head_p)
|
| 1909 |
+
head = head.masked_fill(eye, 0)
|
| 1910 |
+
child = head.transpose(1, 2)
|
| 1911 |
+
cibling = torch.bmm(head, child).masked_fill(eye, 0)
|
| 1912 |
+
|
| 1913 |
+
rel_list = []
|
| 1914 |
+
if "head" in self.config.relations:
|
| 1915 |
+
rel_list.append(head)
|
| 1916 |
+
if "child" in self.config.relations:
|
| 1917 |
+
rel_list.append(child)
|
| 1918 |
+
if "cibling" in self.config.relations:
|
| 1919 |
+
rel_list.append(cibling)
|
| 1920 |
+
|
| 1921 |
+
rel = torch.stack(rel_list, dim=1)
|
| 1922 |
+
|
| 1923 |
+
if n_cntxt_layers > 0:
|
| 1924 |
+
if n_cntxt_layers == 1:
|
| 1925 |
+
rel_weight = self.rel_weight_1
|
| 1926 |
+
elif n_cntxt_layers == 2:
|
| 1927 |
+
rel_weight = self.rel_weight_2
|
| 1928 |
+
else:
|
| 1929 |
+
rel_weight = self.rel_weight
|
| 1930 |
+
|
| 1931 |
+
dep = torch.einsum("lhr,brij->lbhij", rel_weight, rel)
|
| 1932 |
+
|
| 1933 |
+
if n_cntxt_layers == 1:
|
| 1934 |
+
num_layers = self.cntxt_layers_2.config.num_hidden_layers
|
| 1935 |
+
else:
|
| 1936 |
+
num_layers = self.roberta.config.num_hidden_layers
|
| 1937 |
+
|
| 1938 |
+
att_mask = dep.reshape(
|
| 1939 |
+
num_layers,
|
| 1940 |
+
bsz,
|
| 1941 |
+
self.config.num_attention_heads,
|
| 1942 |
+
length,
|
| 1943 |
+
length,
|
| 1944 |
+
)
|
| 1945 |
+
|
| 1946 |
+
return att_mask, cibling, head, block
|
| 1947 |
+
|
| 1948 |
+
def forward(
|
| 1949 |
+
self,
|
| 1950 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 1951 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 1952 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
| 1953 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1954 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 1955 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1956 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1957 |
+
output_attentions: Optional[bool] = None,
|
| 1958 |
+
output_hidden_states: Optional[bool] = None,
|
| 1959 |
+
return_dict: Optional[bool] = None,
|
| 1960 |
+
) -> Union[Tuple, SequenceClassifierOutput]:
|
| 1961 |
+
r"""
|
| 1962 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1963 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
| 1964 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
| 1965 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 1966 |
+
"""
|
| 1967 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1968 |
+
|
| 1969 |
+
if self.config.n_cntxt_layers > 0:
|
| 1970 |
+
cntxt_outputs = self.cntxt_layers(
|
| 1971 |
+
input_ids,
|
| 1972 |
+
attention_mask=attention_mask,
|
| 1973 |
+
token_type_ids=token_type_ids,
|
| 1974 |
+
position_ids=position_ids,
|
| 1975 |
+
head_mask=head_mask,
|
| 1976 |
+
inputs_embeds=inputs_embeds,
|
| 1977 |
+
output_attentions=output_attentions,
|
| 1978 |
+
output_hidden_states=output_hidden_states,
|
| 1979 |
+
return_dict=return_dict)
|
| 1980 |
+
|
| 1981 |
+
|
| 1982 |
+
if self.config.n_cntxt_layers_2 > 0:
|
| 1983 |
+
distance_1, height_1 = self.parse(input_ids, cntxt_outputs[0], n_cntxt_layers=1)
|
| 1984 |
+
att_mask_1, _, _, _ = self.generate_mask(input_ids, distance_1, height_1, n_cntxt_layers=1)
|
| 1985 |
+
|
| 1986 |
+
cntxt_outputs_2 = self.cntxt_layers_2(
|
| 1987 |
+
input_ids,
|
| 1988 |
+
attention_mask=attention_mask,
|
| 1989 |
+
token_type_ids=token_type_ids,
|
| 1990 |
+
position_ids=position_ids,
|
| 1991 |
+
head_mask=head_mask,
|
| 1992 |
+
inputs_embeds=inputs_embeds,
|
| 1993 |
+
output_attentions=output_attentions,
|
| 1994 |
+
output_hidden_states=output_hidden_states,
|
| 1995 |
+
return_dict=return_dict,
|
| 1996 |
+
parser_att_mask=att_mask_1)
|
| 1997 |
+
|
| 1998 |
+
sequence_output = cntxt_outputs_2[0]
|
| 1999 |
+
|
| 2000 |
+
distance_2, height_2 = self.parse(input_ids, sequence_output[0], n_cntxt_layers=2)
|
| 2001 |
+
att_mask, _, _, _ = self.generate_mask(input_ids, distance_2, height_2, n_cntxt_layers=2)
|
| 2002 |
+
|
| 2003 |
+
elif self.config.n_cntxt_layers > 0:
|
| 2004 |
+
distance, height = self.parse(input_ids, cntxt_outputs[0])
|
| 2005 |
+
att_mask, _, _, _ = self.generate_mask(input_ids, distance, height)
|
| 2006 |
+
else:
|
| 2007 |
+
distance, height = self.parse(input_ids)
|
| 2008 |
+
att_mask, _, _, _ = self.generate_mask(input_ids, distance, height)
|
| 2009 |
+
|
| 2010 |
+
outputs = self.roberta(
|
| 2011 |
+
input_ids,
|
| 2012 |
+
attention_mask=attention_mask,
|
| 2013 |
+
token_type_ids=token_type_ids,
|
| 2014 |
+
position_ids=position_ids,
|
| 2015 |
+
head_mask=head_mask,
|
| 2016 |
+
inputs_embeds=inputs_embeds,
|
| 2017 |
+
output_attentions=output_attentions,
|
| 2018 |
+
output_hidden_states=output_hidden_states,
|
| 2019 |
+
return_dict=return_dict,
|
| 2020 |
+
parser_att_mask=att_mask,
|
| 2021 |
+
)
|
| 2022 |
+
sequence_output = outputs[0]
|
| 2023 |
+
logits = self.classifier(sequence_output)
|
| 2024 |
+
|
| 2025 |
+
loss = None
|
| 2026 |
+
if labels is not None:
|
| 2027 |
+
if self.config.problem_type is None:
|
| 2028 |
+
if self.num_labels == 1:
|
| 2029 |
+
self.config.problem_type = "regression"
|
| 2030 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
| 2031 |
+
self.config.problem_type = "single_label_classification"
|
| 2032 |
+
else:
|
| 2033 |
+
self.config.problem_type = "multi_label_classification"
|
| 2034 |
+
|
| 2035 |
+
if self.config.problem_type == "regression":
|
| 2036 |
+
loss_fct = MSELoss()
|
| 2037 |
+
if self.num_labels == 1:
|
| 2038 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
| 2039 |
+
else:
|
| 2040 |
+
loss = loss_fct(logits, labels)
|
| 2041 |
+
elif self.config.problem_type == "single_label_classification":
|
| 2042 |
+
loss_fct = CrossEntropyLoss()
|
| 2043 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
| 2044 |
+
elif self.config.problem_type == "multi_label_classification":
|
| 2045 |
+
loss_fct = BCEWithLogitsLoss()
|
| 2046 |
+
loss = loss_fct(logits, labels)
|
| 2047 |
+
|
| 2048 |
+
if not return_dict:
|
| 2049 |
+
output = (logits,) + outputs[2:]
|
| 2050 |
+
return ((loss,) + output) if loss is not None else output
|
| 2051 |
+
|
| 2052 |
+
return SequenceClassifierOutput(
|
| 2053 |
+
loss=loss,
|
| 2054 |
+
logits=logits,
|
| 2055 |
+
hidden_states=outputs.hidden_states,
|
| 2056 |
+
attentions=outputs.attentions,
|
| 2057 |
+
)
|
| 2058 |
+
|
| 2059 |
+
|
| 2060 |
+
class RobertaClassificationHead(nn.Module):
|
| 2061 |
+
"""Head for sentence-level classification tasks."""
|
| 2062 |
+
|
| 2063 |
+
def __init__(self, config):
|
| 2064 |
+
super().__init__()
|
| 2065 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
| 2066 |
+
classifier_dropout = (
|
| 2067 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
| 2068 |
+
)
|
| 2069 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
| 2070 |
+
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
|
| 2071 |
+
|
| 2072 |
+
def forward(self, features, **kwargs):
|
| 2073 |
+
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
|
| 2074 |
+
x = self.dropout(x)
|
| 2075 |
+
x = self.dense(x)
|
| 2076 |
+
x = torch.tanh(x)
|
| 2077 |
+
x = self.dropout(x)
|
| 2078 |
+
x = self.out_proj(x)
|
| 2079 |
+
return x
|
| 2080 |
+
|
| 2081 |
+
|
| 2082 |
+
def create_position_ids_from_input_ids(
|
| 2083 |
+
input_ids, padding_idx, past_key_values_length=0
|
| 2084 |
+
):
|
| 2085 |
+
"""
|
| 2086 |
+
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
|
| 2087 |
+
are ignored. This is modified from fairseq's `utils.make_positions`.
|
| 2088 |
+
|
| 2089 |
+
Args:
|
| 2090 |
+
x: torch.Tensor x:
|
| 2091 |
+
|
| 2092 |
+
Returns: torch.Tensor
|
| 2093 |
+
"""
|
| 2094 |
+
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
|
| 2095 |
+
mask = input_ids.ne(padding_idx).int()
|
| 2096 |
+
incremental_indices = (
|
| 2097 |
+
torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length
|
| 2098 |
+
) * mask
|
| 2099 |
+
return incremental_indices.long() + padding_idx
|
| 2100 |
+
|
| 2101 |
+
|
| 2102 |
+
def cumprod(x, reverse=False, exclusive=False):
|
| 2103 |
+
"""cumulative product."""
|
| 2104 |
+
if reverse:
|
| 2105 |
+
x = x.flip([-1])
|
| 2106 |
+
|
| 2107 |
+
if exclusive:
|
| 2108 |
+
x = F.pad(x[:, :, :-1], (1, 0), value=1)
|
| 2109 |
+
|
| 2110 |
+
cx = x.cumprod(-1)
|
| 2111 |
+
|
| 2112 |
+
if reverse:
|
| 2113 |
+
cx = cx.flip([-1])
|
| 2114 |
+
return cx
|
| 2115 |
+
|
| 2116 |
+
|
| 2117 |
+
def cumsum(x, reverse=False, exclusive=False):
|
| 2118 |
+
"""cumulative sum."""
|
| 2119 |
+
bsz, _, length = x.size()
|
| 2120 |
+
device = x.device
|
| 2121 |
+
if reverse:
|
| 2122 |
+
if exclusive:
|
| 2123 |
+
w = torch.ones([bsz, length, length], device=device).tril(-1)
|
| 2124 |
+
else:
|
| 2125 |
+
w = torch.ones([bsz, length, length], device=device).tril(0)
|
| 2126 |
+
cx = torch.bmm(x, w)
|
| 2127 |
+
else:
|
| 2128 |
+
if exclusive:
|
| 2129 |
+
w = torch.ones([bsz, length, length], device=device).triu(1)
|
| 2130 |
+
else:
|
| 2131 |
+
w = torch.ones([bsz, length, length], device=device).triu(0)
|
| 2132 |
+
cx = torch.bmm(x, w)
|
| 2133 |
+
return cx
|
| 2134 |
+
|
| 2135 |
+
|
| 2136 |
+
def cummin(x, reverse=False, exclusive=False, max_value=1e9):
|
| 2137 |
+
"""cumulative min."""
|
| 2138 |
+
if reverse:
|
| 2139 |
+
if exclusive:
|
| 2140 |
+
x = F.pad(x[:, :, 1:], (0, 1), value=max_value)
|
| 2141 |
+
x = x.flip([-1]).cummin(-1)[0].flip([-1])
|
| 2142 |
+
else:
|
| 2143 |
+
if exclusive:
|
| 2144 |
+
x = F.pad(x[:, :, :-1], (1, 0), value=max_value)
|
| 2145 |
+
x = x.cummin(-1)[0]
|
| 2146 |
+
return x
|
finetune/cola/checkpoint-400/optimizer.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:894d94568206a98ff7d62fb899d5439877e05449227f8a6c0e558525bfe3e464
|
| 3 |
+
size 1154109317
|
finetune/cola/checkpoint-400/pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ec45d466ef3ab84ba3054a1d8517f7eb5329b61b2723f30fa84011c74b37b089
|
| 3 |
+
size 577069633
|
finetune/cola/checkpoint-400/rng_state.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9f2b88a0416415a793212908cf2c110bbf133d3071d297a54461dc8554f1b61c
|
| 3 |
+
size 14503
|
finetune/cola/checkpoint-400/scheduler.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2b09db5c9b9264697e44562c70af05a12a67180f480992d419fa287214c7be7a
|
| 3 |
+
size 623
|
finetune/cola/checkpoint-400/special_tokens_map.json
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": "<s>",
|
| 3 |
+
"cls_token": "<s>",
|
| 4 |
+
"eos_token": "</s>",
|
| 5 |
+
"mask_token": {
|
| 6 |
+
"content": "<mask>",
|
| 7 |
+
"lstrip": true,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false
|
| 11 |
+
},
|
| 12 |
+
"pad_token": "<pad>",
|
| 13 |
+
"sep_token": "</s>",
|
| 14 |
+
"unk_token": "<unk>"
|
| 15 |
+
}
|
finetune/cola/checkpoint-400/tokenizer_config.json
ADDED
|
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_prefix_space": false,
|
| 3 |
+
"bos_token": {
|
| 4 |
+
"__type": "AddedToken",
|
| 5 |
+
"content": "<s>",
|
| 6 |
+
"lstrip": false,
|
| 7 |
+
"normalized": true,
|
| 8 |
+
"rstrip": false,
|
| 9 |
+
"single_word": false
|
| 10 |
+
},
|
| 11 |
+
"cls_token": {
|
| 12 |
+
"__type": "AddedToken",
|
| 13 |
+
"content": "<s>",
|
| 14 |
+
"lstrip": false,
|
| 15 |
+
"normalized": true,
|
| 16 |
+
"rstrip": false,
|
| 17 |
+
"single_word": false
|
| 18 |
+
},
|
| 19 |
+
"eos_token": {
|
| 20 |
+
"__type": "AddedToken",
|
| 21 |
+
"content": "</s>",
|
| 22 |
+
"lstrip": false,
|
| 23 |
+
"normalized": true,
|
| 24 |
+
"rstrip": false,
|
| 25 |
+
"single_word": false
|
| 26 |
+
},
|
| 27 |
+
"errors": "replace",
|
| 28 |
+
"mask_token": {
|
| 29 |
+
"__type": "AddedToken",
|
| 30 |
+
"content": "<mask>",
|
| 31 |
+
"lstrip": true,
|
| 32 |
+
"normalized": false,
|
| 33 |
+
"rstrip": false,
|
| 34 |
+
"single_word": false
|
| 35 |
+
},
|
| 36 |
+
"model_max_length": 512,
|
| 37 |
+
"name_or_path": "final_models/structroberta_sx2_final",
|
| 38 |
+
"pad_token": {
|
| 39 |
+
"__type": "AddedToken",
|
| 40 |
+
"content": "<pad>",
|
| 41 |
+
"lstrip": false,
|
| 42 |
+
"normalized": true,
|
| 43 |
+
"rstrip": false,
|
| 44 |
+
"single_word": false
|
| 45 |
+
},
|
| 46 |
+
"sep_token": {
|
| 47 |
+
"__type": "AddedToken",
|
| 48 |
+
"content": "</s>",
|
| 49 |
+
"lstrip": false,
|
| 50 |
+
"normalized": true,
|
| 51 |
+
"rstrip": false,
|
| 52 |
+
"single_word": false
|
| 53 |
+
},
|
| 54 |
+
"special_tokens_map_file": null,
|
| 55 |
+
"tokenizer_class": "RobertaTokenizer",
|
| 56 |
+
"trim_offsets": true,
|
| 57 |
+
"unk_token": {
|
| 58 |
+
"__type": "AddedToken",
|
| 59 |
+
"content": "<unk>",
|
| 60 |
+
"lstrip": false,
|
| 61 |
+
"normalized": true,
|
| 62 |
+
"rstrip": false,
|
| 63 |
+
"single_word": false
|
| 64 |
+
}
|
| 65 |
+
}
|
finetune/cola/checkpoint-400/trainer_state.json
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_metric": 0.7994634473507714,
|
| 3 |
+
"best_model_checkpoint": "final_models/structroberta_sx2_final/finetune/cola/checkpoint-400",
|
| 4 |
+
"epoch": 5.797101449275362,
|
| 5 |
+
"global_step": 400,
|
| 6 |
+
"is_hyper_param_search": false,
|
| 7 |
+
"is_local_process_zero": true,
|
| 8 |
+
"is_world_process_zero": true,
|
| 9 |
+
"log_history": [
|
| 10 |
+
{
|
| 11 |
+
"epoch": 5.8,
|
| 12 |
+
"eval_accuracy": 0.7065750956535339,
|
| 13 |
+
"eval_f1": 0.7994634473507714,
|
| 14 |
+
"eval_loss": 0.7585899829864502,
|
| 15 |
+
"eval_mcc": 0.262551358979245,
|
| 16 |
+
"eval_runtime": 2.1393,
|
| 17 |
+
"eval_samples_per_second": 476.322,
|
| 18 |
+
"eval_steps_per_second": 59.832,
|
| 19 |
+
"step": 400
|
| 20 |
+
}
|
| 21 |
+
],
|
| 22 |
+
"max_steps": 690,
|
| 23 |
+
"num_train_epochs": 10,
|
| 24 |
+
"total_flos": 4343859215677440.0,
|
| 25 |
+
"trial_name": null,
|
| 26 |
+
"trial_params": null
|
| 27 |
+
}
|
finetune/cola/checkpoint-400/training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:535606b0b8045695abdbfa17932190b45a57263b731642e3613fb33c791f7fa5
|
| 3 |
+
size 3503
|
finetune/cola/checkpoint-400/vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
finetune/cola/config.json
ADDED
|
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "final_models/structroberta_sx2_final",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"StructRobertaForSequenceClassification"
|
| 5 |
+
],
|
| 6 |
+
"attention_probs_dropout_prob": 0.1,
|
| 7 |
+
"auto_map": {
|
| 8 |
+
"AutoConfig": "modeling_structroberta.StructRobertaConfig",
|
| 9 |
+
"AutoModelForMaskedLM": "modeling_structroberta.StructRoberta",
|
| 10 |
+
"AutoModelForSequenceClassification": "modeling_structroberta.StructRobertaForSequenceClassification"
|
| 11 |
+
},
|
| 12 |
+
"bos_token_id": 0,
|
| 13 |
+
"classifier_dropout": null,
|
| 14 |
+
"conv_size": 9,
|
| 15 |
+
"eos_token_id": 2,
|
| 16 |
+
"hidden_act": "gelu",
|
| 17 |
+
"hidden_dropout_prob": 0.1,
|
| 18 |
+
"hidden_size": 768,
|
| 19 |
+
"id2label": {
|
| 20 |
+
"0": 0,
|
| 21 |
+
"1": 1
|
| 22 |
+
},
|
| 23 |
+
"initializer_range": 0.02,
|
| 24 |
+
"intermediate_size": 3072,
|
| 25 |
+
"label2id": {
|
| 26 |
+
"0": 0,
|
| 27 |
+
"1": 1
|
| 28 |
+
},
|
| 29 |
+
"layer_norm_eps": 1e-05,
|
| 30 |
+
"max_position_embeddings": 514,
|
| 31 |
+
"model_type": "roberta",
|
| 32 |
+
"n_cntxt_layers": 4,
|
| 33 |
+
"n_cntxt_layers_2": 0,
|
| 34 |
+
"n_parser_layers": 6,
|
| 35 |
+
"num_attention_heads": 12,
|
| 36 |
+
"num_hidden_layers": 8,
|
| 37 |
+
"pad_token_id": 1,
|
| 38 |
+
"position_embedding_type": "absolute",
|
| 39 |
+
"problem_type": "single_label_classification",
|
| 40 |
+
"relations": [
|
| 41 |
+
"head",
|
| 42 |
+
"child"
|
| 43 |
+
],
|
| 44 |
+
"torch_dtype": "float32",
|
| 45 |
+
"transformers_version": "4.26.1",
|
| 46 |
+
"type_vocab_size": 1,
|
| 47 |
+
"use_cache": true,
|
| 48 |
+
"vocab_size": 32000,
|
| 49 |
+
"weight_act": "softmax"
|
| 50 |
+
}
|
finetune/cola/eval_results.json
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"epoch": 10.0,
|
| 3 |
+
"eval_accuracy": 0.7065750956535339,
|
| 4 |
+
"eval_f1": 0.7994634473507714,
|
| 5 |
+
"eval_loss": 0.7585899829864502,
|
| 6 |
+
"eval_mcc": 0.262551358979245,
|
| 7 |
+
"eval_runtime": 2.1721,
|
| 8 |
+
"eval_samples": 1019,
|
| 9 |
+
"eval_samples_per_second": 469.121,
|
| 10 |
+
"eval_steps_per_second": 58.928
|
| 11 |
+
}
|
finetune/cola/merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
finetune/cola/modeling_structroberta.py
ADDED
|
@@ -0,0 +1,2146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import copy
|
| 2 |
+
import math
|
| 3 |
+
from typing import List, Optional, Tuple, Union
|
| 4 |
+
import torch
|
| 5 |
+
import torch.utils.checkpoint
|
| 6 |
+
from packaging import version
|
| 7 |
+
from torch import nn
|
| 8 |
+
import torch.nn.functional as F
|
| 9 |
+
from torch.nn import CrossEntropyLoss, MSELoss, BCEWithLogitsLoss
|
| 10 |
+
from transformers.activations import ACT2FN, gelu
|
| 11 |
+
from transformers.modeling_outputs import (
|
| 12 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
| 13 |
+
BaseModelOutputWithPoolingAndCrossAttentions,
|
| 14 |
+
MaskedLMOutput,
|
| 15 |
+
SequenceClassifierOutput
|
| 16 |
+
)
|
| 17 |
+
from transformers.modeling_utils import (
|
| 18 |
+
PreTrainedModel,
|
| 19 |
+
apply_chunking_to_forward,
|
| 20 |
+
find_pruneable_heads_and_indices,
|
| 21 |
+
prune_linear_layer,
|
| 22 |
+
)
|
| 23 |
+
from transformers.utils import logging
|
| 24 |
+
from transformers import RobertaConfig
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
logger = logging.get_logger(__name__)
|
| 28 |
+
ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
| 29 |
+
"roberta-base",
|
| 30 |
+
"roberta-large",
|
| 31 |
+
"roberta-large-mnli",
|
| 32 |
+
"distilroberta-base",
|
| 33 |
+
"roberta-base-openai-detector",
|
| 34 |
+
"roberta-large-openai-detector",
|
| 35 |
+
# See all RoBERTa models at https://huggingface.co/models?filter=roberta
|
| 36 |
+
]
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
class StructRobertaConfig(RobertaConfig):
|
| 40 |
+
model_type = "roberta"
|
| 41 |
+
|
| 42 |
+
def __init__(
|
| 43 |
+
self,
|
| 44 |
+
n_parser_layers=4,
|
| 45 |
+
conv_size=9,
|
| 46 |
+
relations=("head", "child"),
|
| 47 |
+
weight_act="softmax",
|
| 48 |
+
n_cntxt_layers=3,
|
| 49 |
+
n_cntxt_layers_2=0,
|
| 50 |
+
**kwargs,):
|
| 51 |
+
|
| 52 |
+
super().__init__(**kwargs)
|
| 53 |
+
self.n_cntxt_layers = n_cntxt_layers
|
| 54 |
+
self.n_parser_layers = n_parser_layers
|
| 55 |
+
self.n_cntxt_layers_2 = n_cntxt_layers_2
|
| 56 |
+
self.conv_size = conv_size
|
| 57 |
+
self.relations = relations
|
| 58 |
+
self.weight_act = weight_act
|
| 59 |
+
|
| 60 |
+
class Conv1d(nn.Module):
|
| 61 |
+
"""1D convolution layer."""
|
| 62 |
+
|
| 63 |
+
def __init__(self, hidden_size, kernel_size, dilation=1):
|
| 64 |
+
"""Initialization.
|
| 65 |
+
|
| 66 |
+
Args:
|
| 67 |
+
hidden_size: dimension of input embeddings
|
| 68 |
+
kernel_size: convolution kernel size
|
| 69 |
+
dilation: the spacing between the kernel points
|
| 70 |
+
"""
|
| 71 |
+
super(Conv1d, self).__init__()
|
| 72 |
+
|
| 73 |
+
if kernel_size % 2 == 0:
|
| 74 |
+
padding = (kernel_size // 2) * dilation
|
| 75 |
+
self.shift = True
|
| 76 |
+
else:
|
| 77 |
+
padding = ((kernel_size - 1) // 2) * dilation
|
| 78 |
+
self.shift = False
|
| 79 |
+
self.conv = nn.Conv1d(
|
| 80 |
+
hidden_size, hidden_size, kernel_size, padding=padding, dilation=dilation
|
| 81 |
+
)
|
| 82 |
+
|
| 83 |
+
def forward(self, x):
|
| 84 |
+
"""Compute convolution.
|
| 85 |
+
|
| 86 |
+
Args:
|
| 87 |
+
x: input embeddings
|
| 88 |
+
Returns:
|
| 89 |
+
conv_output: convolution results
|
| 90 |
+
"""
|
| 91 |
+
|
| 92 |
+
if self.shift:
|
| 93 |
+
return self.conv(x.transpose(1, 2)).transpose(1, 2)[:, 1:]
|
| 94 |
+
else:
|
| 95 |
+
return self.conv(x.transpose(1, 2)).transpose(1, 2)
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
class RobertaEmbeddings(nn.Module):
|
| 99 |
+
"""
|
| 100 |
+
Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
|
| 101 |
+
"""
|
| 102 |
+
|
| 103 |
+
# Copied from transformers.models.bert.modeling_bert.BertEmbeddings.__init__
|
| 104 |
+
def __init__(self, config):
|
| 105 |
+
super().__init__()
|
| 106 |
+
self.word_embeddings = nn.Embedding(
|
| 107 |
+
config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id
|
| 108 |
+
)
|
| 109 |
+
self.position_embeddings = nn.Embedding(
|
| 110 |
+
config.max_position_embeddings, config.hidden_size
|
| 111 |
+
)
|
| 112 |
+
self.token_type_embeddings = nn.Embedding(
|
| 113 |
+
config.type_vocab_size, config.hidden_size
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
| 117 |
+
# any TensorFlow checkpoint file
|
| 118 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 119 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 120 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
| 121 |
+
self.position_embedding_type = getattr(
|
| 122 |
+
config, "position_embedding_type", "absolute"
|
| 123 |
+
)
|
| 124 |
+
self.register_buffer(
|
| 125 |
+
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1))
|
| 126 |
+
)
|
| 127 |
+
if version.parse(torch.__version__) > version.parse("1.6.0"):
|
| 128 |
+
self.register_buffer(
|
| 129 |
+
"token_type_ids",
|
| 130 |
+
torch.zeros(self.position_ids.size(), dtype=torch.long),
|
| 131 |
+
persistent=False,
|
| 132 |
+
)
|
| 133 |
+
|
| 134 |
+
# End copy
|
| 135 |
+
self.padding_idx = config.pad_token_id
|
| 136 |
+
self.position_embeddings = nn.Embedding(
|
| 137 |
+
config.max_position_embeddings,
|
| 138 |
+
config.hidden_size,
|
| 139 |
+
padding_idx=self.padding_idx,
|
| 140 |
+
)
|
| 141 |
+
|
| 142 |
+
def forward(
|
| 143 |
+
self,
|
| 144 |
+
input_ids=None,
|
| 145 |
+
token_type_ids=None,
|
| 146 |
+
position_ids=None,
|
| 147 |
+
inputs_embeds=None,
|
| 148 |
+
past_key_values_length=0,
|
| 149 |
+
):
|
| 150 |
+
if position_ids is None:
|
| 151 |
+
if input_ids is not None:
|
| 152 |
+
# Create the position ids from the input token ids. Any padded tokens remain padded.
|
| 153 |
+
position_ids = create_position_ids_from_input_ids(
|
| 154 |
+
input_ids, self.padding_idx, past_key_values_length
|
| 155 |
+
)
|
| 156 |
+
else:
|
| 157 |
+
position_ids = self.create_position_ids_from_inputs_embeds(
|
| 158 |
+
inputs_embeds
|
| 159 |
+
)
|
| 160 |
+
|
| 161 |
+
if input_ids is not None:
|
| 162 |
+
input_shape = input_ids.size()
|
| 163 |
+
else:
|
| 164 |
+
input_shape = inputs_embeds.size()[:-1]
|
| 165 |
+
|
| 166 |
+
seq_length = input_shape[1]
|
| 167 |
+
|
| 168 |
+
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
|
| 169 |
+
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
|
| 170 |
+
# issue #5664
|
| 171 |
+
if token_type_ids is None:
|
| 172 |
+
if hasattr(self, "token_type_ids"):
|
| 173 |
+
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
|
| 174 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(
|
| 175 |
+
input_shape[0], seq_length
|
| 176 |
+
)
|
| 177 |
+
token_type_ids = buffered_token_type_ids_expanded
|
| 178 |
+
else:
|
| 179 |
+
token_type_ids = torch.zeros(
|
| 180 |
+
input_shape, dtype=torch.long, device=self.position_ids.device
|
| 181 |
+
)
|
| 182 |
+
|
| 183 |
+
if inputs_embeds is None:
|
| 184 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
| 185 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
| 186 |
+
|
| 187 |
+
embeddings = inputs_embeds + token_type_embeddings
|
| 188 |
+
if self.position_embedding_type == "absolute":
|
| 189 |
+
position_embeddings = self.position_embeddings(position_ids)
|
| 190 |
+
embeddings += position_embeddings
|
| 191 |
+
embeddings = self.LayerNorm(embeddings)
|
| 192 |
+
embeddings = self.dropout(embeddings)
|
| 193 |
+
return embeddings
|
| 194 |
+
|
| 195 |
+
def create_position_ids_from_inputs_embeds(self, inputs_embeds):
|
| 196 |
+
"""
|
| 197 |
+
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
|
| 198 |
+
|
| 199 |
+
Args:
|
| 200 |
+
inputs_embeds: torch.Tensor
|
| 201 |
+
|
| 202 |
+
Returns: torch.Tensor
|
| 203 |
+
"""
|
| 204 |
+
input_shape = inputs_embeds.size()[:-1]
|
| 205 |
+
sequence_length = input_shape[1]
|
| 206 |
+
|
| 207 |
+
position_ids = torch.arange(
|
| 208 |
+
self.padding_idx + 1,
|
| 209 |
+
sequence_length + self.padding_idx + 1,
|
| 210 |
+
dtype=torch.long,
|
| 211 |
+
device=inputs_embeds.device,
|
| 212 |
+
)
|
| 213 |
+
return position_ids.unsqueeze(0).expand(input_shape)
|
| 214 |
+
|
| 215 |
+
|
| 216 |
+
# Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->Roberta
|
| 217 |
+
class RobertaSelfAttention(nn.Module):
|
| 218 |
+
def __init__(self, config, position_embedding_type=None):
|
| 219 |
+
super().__init__()
|
| 220 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(
|
| 221 |
+
config, "embedding_size"
|
| 222 |
+
):
|
| 223 |
+
raise ValueError(
|
| 224 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
| 225 |
+
f"heads ({config.num_attention_heads})"
|
| 226 |
+
)
|
| 227 |
+
|
| 228 |
+
self.num_attention_heads = config.num_attention_heads
|
| 229 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
| 230 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
| 231 |
+
|
| 232 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
| 233 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
| 234 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
| 235 |
+
|
| 236 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
| 237 |
+
self.position_embedding_type = position_embedding_type or getattr(
|
| 238 |
+
config, "position_embedding_type", "absolute"
|
| 239 |
+
)
|
| 240 |
+
if (
|
| 241 |
+
self.position_embedding_type == "relative_key"
|
| 242 |
+
or self.position_embedding_type == "relative_key_query"
|
| 243 |
+
):
|
| 244 |
+
self.max_position_embeddings = config.max_position_embeddings
|
| 245 |
+
self.distance_embedding = nn.Embedding(
|
| 246 |
+
2 * config.max_position_embeddings - 1, self.attention_head_size
|
| 247 |
+
)
|
| 248 |
+
|
| 249 |
+
self.is_decoder = config.is_decoder
|
| 250 |
+
|
| 251 |
+
def transpose_for_scores(self, x):
|
| 252 |
+
new_x_shape = x.size()[:-1] + (
|
| 253 |
+
self.num_attention_heads,
|
| 254 |
+
self.attention_head_size,
|
| 255 |
+
)
|
| 256 |
+
x = x.view(new_x_shape)
|
| 257 |
+
return x.permute(0, 2, 1, 3)
|
| 258 |
+
|
| 259 |
+
def forward(
|
| 260 |
+
self,
|
| 261 |
+
hidden_states: torch.Tensor,
|
| 262 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 263 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 264 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
| 265 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 266 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
| 267 |
+
output_attentions: Optional[bool] = False,
|
| 268 |
+
parser_att_mask=None,
|
| 269 |
+
) -> Tuple[torch.Tensor]:
|
| 270 |
+
mixed_query_layer = self.query(hidden_states)
|
| 271 |
+
|
| 272 |
+
# If this is instantiated as a cross-attention module, the keys
|
| 273 |
+
# and values come from an encoder; the attention mask needs to be
|
| 274 |
+
# such that the encoder's padding tokens are not attended to.
|
| 275 |
+
is_cross_attention = encoder_hidden_states is not None
|
| 276 |
+
|
| 277 |
+
if is_cross_attention and past_key_value is not None:
|
| 278 |
+
# reuse k,v, cross_attentions
|
| 279 |
+
key_layer = past_key_value[0]
|
| 280 |
+
value_layer = past_key_value[1]
|
| 281 |
+
attention_mask = encoder_attention_mask
|
| 282 |
+
elif is_cross_attention:
|
| 283 |
+
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
|
| 284 |
+
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
|
| 285 |
+
attention_mask = encoder_attention_mask
|
| 286 |
+
elif past_key_value is not None:
|
| 287 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
| 288 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
| 289 |
+
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
|
| 290 |
+
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
|
| 291 |
+
else:
|
| 292 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
| 293 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
| 294 |
+
|
| 295 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
| 296 |
+
|
| 297 |
+
if self.is_decoder:
|
| 298 |
+
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
| 299 |
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
| 300 |
+
# key/value_states (first "if" case)
|
| 301 |
+
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
| 302 |
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
| 303 |
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
| 304 |
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
| 305 |
+
past_key_value = (key_layer, value_layer)
|
| 306 |
+
|
| 307 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
| 308 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
| 309 |
+
|
| 310 |
+
if (
|
| 311 |
+
self.position_embedding_type == "relative_key"
|
| 312 |
+
or self.position_embedding_type == "relative_key_query"
|
| 313 |
+
):
|
| 314 |
+
seq_length = hidden_states.size()[1]
|
| 315 |
+
position_ids_l = torch.arange(
|
| 316 |
+
seq_length, dtype=torch.long, device=hidden_states.device
|
| 317 |
+
).view(-1, 1)
|
| 318 |
+
position_ids_r = torch.arange(
|
| 319 |
+
seq_length, dtype=torch.long, device=hidden_states.device
|
| 320 |
+
).view(1, -1)
|
| 321 |
+
distance = position_ids_l - position_ids_r
|
| 322 |
+
positional_embedding = self.distance_embedding(
|
| 323 |
+
distance + self.max_position_embeddings - 1
|
| 324 |
+
)
|
| 325 |
+
positional_embedding = positional_embedding.to(
|
| 326 |
+
dtype=query_layer.dtype
|
| 327 |
+
) # fp16 compatibility
|
| 328 |
+
|
| 329 |
+
if self.position_embedding_type == "relative_key":
|
| 330 |
+
relative_position_scores = torch.einsum(
|
| 331 |
+
"bhld,lrd->bhlr", query_layer, positional_embedding
|
| 332 |
+
)
|
| 333 |
+
attention_scores = attention_scores + relative_position_scores
|
| 334 |
+
elif self.position_embedding_type == "relative_key_query":
|
| 335 |
+
relative_position_scores_query = torch.einsum(
|
| 336 |
+
"bhld,lrd->bhlr", query_layer, positional_embedding
|
| 337 |
+
)
|
| 338 |
+
relative_position_scores_key = torch.einsum(
|
| 339 |
+
"bhrd,lrd->bhlr", key_layer, positional_embedding
|
| 340 |
+
)
|
| 341 |
+
attention_scores = (
|
| 342 |
+
attention_scores
|
| 343 |
+
+ relative_position_scores_query
|
| 344 |
+
+ relative_position_scores_key
|
| 345 |
+
)
|
| 346 |
+
|
| 347 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
| 348 |
+
if attention_mask is not None:
|
| 349 |
+
# Apply the attention mask is (precomputed for all layers in RobertaModel forward() function)
|
| 350 |
+
attention_scores = attention_scores + attention_mask
|
| 351 |
+
|
| 352 |
+
if parser_att_mask is None:
|
| 353 |
+
# Normalize the attention scores to probabilities.
|
| 354 |
+
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
| 355 |
+
else:
|
| 356 |
+
attention_probs = torch.sigmoid(attention_scores) * parser_att_mask
|
| 357 |
+
|
| 358 |
+
# This is actually dropping out entire tokens to attend to, which might
|
| 359 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
| 360 |
+
attention_probs = self.dropout(attention_probs)
|
| 361 |
+
|
| 362 |
+
# Mask heads if we want to
|
| 363 |
+
if head_mask is not None:
|
| 364 |
+
attention_probs = attention_probs * head_mask
|
| 365 |
+
|
| 366 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
| 367 |
+
|
| 368 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
| 369 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
| 370 |
+
context_layer = context_layer.view(new_context_layer_shape)
|
| 371 |
+
|
| 372 |
+
outputs = (
|
| 373 |
+
(context_layer, attention_probs) if output_attentions else (context_layer,)
|
| 374 |
+
)
|
| 375 |
+
|
| 376 |
+
if self.is_decoder:
|
| 377 |
+
outputs = outputs + (past_key_value,)
|
| 378 |
+
return outputs
|
| 379 |
+
|
| 380 |
+
|
| 381 |
+
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput
|
| 382 |
+
class RobertaSelfOutput(nn.Module):
|
| 383 |
+
def __init__(self, config):
|
| 384 |
+
super().__init__()
|
| 385 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
| 386 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 387 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 388 |
+
|
| 389 |
+
def forward(
|
| 390 |
+
self, hidden_states: torch.Tensor, input_tensor: torch.Tensor
|
| 391 |
+
) -> torch.Tensor:
|
| 392 |
+
hidden_states = self.dense(hidden_states)
|
| 393 |
+
hidden_states = self.dropout(hidden_states)
|
| 394 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
| 395 |
+
return hidden_states
|
| 396 |
+
|
| 397 |
+
|
| 398 |
+
# Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->Roberta
|
| 399 |
+
class RobertaAttention(nn.Module):
|
| 400 |
+
def __init__(self, config, position_embedding_type=None):
|
| 401 |
+
super().__init__()
|
| 402 |
+
self.self = RobertaSelfAttention(
|
| 403 |
+
config, position_embedding_type=position_embedding_type
|
| 404 |
+
)
|
| 405 |
+
self.output = RobertaSelfOutput(config)
|
| 406 |
+
self.pruned_heads = set()
|
| 407 |
+
|
| 408 |
+
def prune_heads(self, heads):
|
| 409 |
+
if len(heads) == 0:
|
| 410 |
+
return
|
| 411 |
+
heads, index = find_pruneable_heads_and_indices(
|
| 412 |
+
heads,
|
| 413 |
+
self.self.num_attention_heads,
|
| 414 |
+
self.self.attention_head_size,
|
| 415 |
+
self.pruned_heads,
|
| 416 |
+
)
|
| 417 |
+
|
| 418 |
+
# Prune linear layers
|
| 419 |
+
self.self.query = prune_linear_layer(self.self.query, index)
|
| 420 |
+
self.self.key = prune_linear_layer(self.self.key, index)
|
| 421 |
+
self.self.value = prune_linear_layer(self.self.value, index)
|
| 422 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
| 423 |
+
|
| 424 |
+
# Update hyper params and store pruned heads
|
| 425 |
+
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
| 426 |
+
self.self.all_head_size = (
|
| 427 |
+
self.self.attention_head_size * self.self.num_attention_heads
|
| 428 |
+
)
|
| 429 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
| 430 |
+
|
| 431 |
+
def forward(
|
| 432 |
+
self,
|
| 433 |
+
hidden_states: torch.Tensor,
|
| 434 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 435 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 436 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
| 437 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 438 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
| 439 |
+
output_attentions: Optional[bool] = False,
|
| 440 |
+
parser_att_mask=None,
|
| 441 |
+
) -> Tuple[torch.Tensor]:
|
| 442 |
+
self_outputs = self.self(
|
| 443 |
+
hidden_states,
|
| 444 |
+
attention_mask,
|
| 445 |
+
head_mask,
|
| 446 |
+
encoder_hidden_states,
|
| 447 |
+
encoder_attention_mask,
|
| 448 |
+
past_key_value,
|
| 449 |
+
output_attentions,
|
| 450 |
+
parser_att_mask=parser_att_mask,
|
| 451 |
+
)
|
| 452 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
| 453 |
+
outputs = (attention_output,) + self_outputs[
|
| 454 |
+
1:
|
| 455 |
+
] # add attentions if we output them
|
| 456 |
+
return outputs
|
| 457 |
+
|
| 458 |
+
|
| 459 |
+
# Copied from transformers.models.bert.modeling_bert.BertIntermediate
|
| 460 |
+
class RobertaIntermediate(nn.Module):
|
| 461 |
+
def __init__(self, config):
|
| 462 |
+
super().__init__()
|
| 463 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
| 464 |
+
if isinstance(config.hidden_act, str):
|
| 465 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
| 466 |
+
else:
|
| 467 |
+
self.intermediate_act_fn = config.hidden_act
|
| 468 |
+
|
| 469 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 470 |
+
hidden_states = self.dense(hidden_states)
|
| 471 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
| 472 |
+
return hidden_states
|
| 473 |
+
|
| 474 |
+
|
| 475 |
+
# Copied from transformers.models.bert.modeling_bert.BertOutput
|
| 476 |
+
class RobertaOutput(nn.Module):
|
| 477 |
+
def __init__(self, config):
|
| 478 |
+
super().__init__()
|
| 479 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
| 480 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 481 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 482 |
+
|
| 483 |
+
def forward(
|
| 484 |
+
self, hidden_states: torch.Tensor, input_tensor: torch.Tensor
|
| 485 |
+
) -> torch.Tensor:
|
| 486 |
+
hidden_states = self.dense(hidden_states)
|
| 487 |
+
hidden_states = self.dropout(hidden_states)
|
| 488 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
| 489 |
+
return hidden_states
|
| 490 |
+
|
| 491 |
+
|
| 492 |
+
# Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->Roberta
|
| 493 |
+
class RobertaLayer(nn.Module):
|
| 494 |
+
def __init__(self, config):
|
| 495 |
+
super().__init__()
|
| 496 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
| 497 |
+
self.seq_len_dim = 1
|
| 498 |
+
self.attention = RobertaAttention(config)
|
| 499 |
+
self.is_decoder = config.is_decoder
|
| 500 |
+
self.add_cross_attention = config.add_cross_attention
|
| 501 |
+
if self.add_cross_attention:
|
| 502 |
+
if not self.is_decoder:
|
| 503 |
+
raise ValueError(
|
| 504 |
+
f"{self} should be used as a decoder model if cross attention is added"
|
| 505 |
+
)
|
| 506 |
+
self.crossattention = RobertaAttention(
|
| 507 |
+
config, position_embedding_type="absolute"
|
| 508 |
+
)
|
| 509 |
+
self.intermediate = RobertaIntermediate(config)
|
| 510 |
+
self.output = RobertaOutput(config)
|
| 511 |
+
|
| 512 |
+
def forward(
|
| 513 |
+
self,
|
| 514 |
+
hidden_states: torch.Tensor,
|
| 515 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 516 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 517 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
| 518 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 519 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
| 520 |
+
output_attentions: Optional[bool] = False,
|
| 521 |
+
parser_att_mask=None,
|
| 522 |
+
) -> Tuple[torch.Tensor]:
|
| 523 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
| 524 |
+
self_attn_past_key_value = (
|
| 525 |
+
past_key_value[:2] if past_key_value is not None else None
|
| 526 |
+
)
|
| 527 |
+
self_attention_outputs = self.attention(
|
| 528 |
+
hidden_states,
|
| 529 |
+
attention_mask,
|
| 530 |
+
head_mask,
|
| 531 |
+
output_attentions=output_attentions,
|
| 532 |
+
past_key_value=self_attn_past_key_value,
|
| 533 |
+
parser_att_mask=parser_att_mask,
|
| 534 |
+
)
|
| 535 |
+
attention_output = self_attention_outputs[0]
|
| 536 |
+
|
| 537 |
+
# if decoder, the last output is tuple of self-attn cache
|
| 538 |
+
if self.is_decoder:
|
| 539 |
+
outputs = self_attention_outputs[1:-1]
|
| 540 |
+
present_key_value = self_attention_outputs[-1]
|
| 541 |
+
else:
|
| 542 |
+
outputs = self_attention_outputs[
|
| 543 |
+
1:
|
| 544 |
+
] # add self attentions if we output attention weights
|
| 545 |
+
|
| 546 |
+
cross_attn_present_key_value = None
|
| 547 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
| 548 |
+
if not hasattr(self, "crossattention"):
|
| 549 |
+
raise ValueError(
|
| 550 |
+
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers by setting `config.add_cross_attention=True`"
|
| 551 |
+
)
|
| 552 |
+
|
| 553 |
+
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
|
| 554 |
+
cross_attn_past_key_value = (
|
| 555 |
+
past_key_value[-2:] if past_key_value is not None else None
|
| 556 |
+
)
|
| 557 |
+
cross_attention_outputs = self.crossattention(
|
| 558 |
+
attention_output,
|
| 559 |
+
attention_mask,
|
| 560 |
+
head_mask,
|
| 561 |
+
encoder_hidden_states,
|
| 562 |
+
encoder_attention_mask,
|
| 563 |
+
cross_attn_past_key_value,
|
| 564 |
+
output_attentions,
|
| 565 |
+
)
|
| 566 |
+
attention_output = cross_attention_outputs[0]
|
| 567 |
+
outputs = (
|
| 568 |
+
outputs + cross_attention_outputs[1:-1]
|
| 569 |
+
) # add cross attentions if we output attention weights
|
| 570 |
+
|
| 571 |
+
# add cross-attn cache to positions 3,4 of present_key_value tuple
|
| 572 |
+
cross_attn_present_key_value = cross_attention_outputs[-1]
|
| 573 |
+
present_key_value = present_key_value + cross_attn_present_key_value
|
| 574 |
+
|
| 575 |
+
layer_output = apply_chunking_to_forward(
|
| 576 |
+
self.feed_forward_chunk,
|
| 577 |
+
self.chunk_size_feed_forward,
|
| 578 |
+
self.seq_len_dim,
|
| 579 |
+
attention_output,
|
| 580 |
+
)
|
| 581 |
+
outputs = (layer_output,) + outputs
|
| 582 |
+
|
| 583 |
+
# if decoder, return the attn key/values as the last output
|
| 584 |
+
if self.is_decoder:
|
| 585 |
+
outputs = outputs + (present_key_value,)
|
| 586 |
+
|
| 587 |
+
return outputs
|
| 588 |
+
|
| 589 |
+
def feed_forward_chunk(self, attention_output):
|
| 590 |
+
intermediate_output = self.intermediate(attention_output)
|
| 591 |
+
layer_output = self.output(intermediate_output, attention_output)
|
| 592 |
+
return layer_output
|
| 593 |
+
|
| 594 |
+
|
| 595 |
+
# Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->Roberta
|
| 596 |
+
class RobertaEncoder(nn.Module):
|
| 597 |
+
def __init__(self, config):
|
| 598 |
+
super().__init__()
|
| 599 |
+
self.config = config
|
| 600 |
+
self.layer = nn.ModuleList(
|
| 601 |
+
[RobertaLayer(config) for _ in range(config.num_hidden_layers)]
|
| 602 |
+
)
|
| 603 |
+
self.gradient_checkpointing = False
|
| 604 |
+
|
| 605 |
+
def forward(
|
| 606 |
+
self,
|
| 607 |
+
hidden_states: torch.Tensor,
|
| 608 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 609 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 610 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
| 611 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 612 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
| 613 |
+
use_cache: Optional[bool] = None,
|
| 614 |
+
output_attentions: Optional[bool] = False,
|
| 615 |
+
output_hidden_states: Optional[bool] = False,
|
| 616 |
+
return_dict: Optional[bool] = True,
|
| 617 |
+
parser_att_mask=None,
|
| 618 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
|
| 619 |
+
all_hidden_states = () if output_hidden_states else None
|
| 620 |
+
all_self_attentions = () if output_attentions else None
|
| 621 |
+
all_cross_attentions = (
|
| 622 |
+
() if output_attentions and self.config.add_cross_attention else None
|
| 623 |
+
)
|
| 624 |
+
|
| 625 |
+
next_decoder_cache = () if use_cache else None
|
| 626 |
+
for i, layer_module in enumerate(self.layer):
|
| 627 |
+
if output_hidden_states:
|
| 628 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 629 |
+
|
| 630 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
| 631 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
| 632 |
+
|
| 633 |
+
if self.gradient_checkpointing and self.training:
|
| 634 |
+
|
| 635 |
+
if use_cache:
|
| 636 |
+
logger.warning(
|
| 637 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
| 638 |
+
)
|
| 639 |
+
use_cache = False
|
| 640 |
+
|
| 641 |
+
def create_custom_forward(module):
|
| 642 |
+
def custom_forward(*inputs):
|
| 643 |
+
return module(*inputs, past_key_value, output_attentions)
|
| 644 |
+
|
| 645 |
+
return custom_forward
|
| 646 |
+
|
| 647 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
| 648 |
+
create_custom_forward(layer_module),
|
| 649 |
+
hidden_states,
|
| 650 |
+
attention_mask,
|
| 651 |
+
layer_head_mask,
|
| 652 |
+
encoder_hidden_states,
|
| 653 |
+
encoder_attention_mask,
|
| 654 |
+
)
|
| 655 |
+
else:
|
| 656 |
+
if parser_att_mask is not None:
|
| 657 |
+
layer_outputs = layer_module(
|
| 658 |
+
hidden_states,
|
| 659 |
+
attention_mask,
|
| 660 |
+
layer_head_mask,
|
| 661 |
+
encoder_hidden_states,
|
| 662 |
+
encoder_attention_mask,
|
| 663 |
+
past_key_value,
|
| 664 |
+
output_attentions,
|
| 665 |
+
parser_att_mask=parser_att_mask[i])
|
| 666 |
+
else:
|
| 667 |
+
layer_outputs = layer_module(
|
| 668 |
+
hidden_states,
|
| 669 |
+
attention_mask,
|
| 670 |
+
layer_head_mask,
|
| 671 |
+
encoder_hidden_states,
|
| 672 |
+
encoder_attention_mask,
|
| 673 |
+
past_key_value,
|
| 674 |
+
output_attentions,
|
| 675 |
+
parser_att_mask=None)
|
| 676 |
+
|
| 677 |
+
|
| 678 |
+
hidden_states = layer_outputs[0]
|
| 679 |
+
if use_cache:
|
| 680 |
+
next_decoder_cache += (layer_outputs[-1],)
|
| 681 |
+
if output_attentions:
|
| 682 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
| 683 |
+
if self.config.add_cross_attention:
|
| 684 |
+
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
|
| 685 |
+
|
| 686 |
+
if output_hidden_states:
|
| 687 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 688 |
+
|
| 689 |
+
if not return_dict:
|
| 690 |
+
return tuple(
|
| 691 |
+
v
|
| 692 |
+
for v in [
|
| 693 |
+
hidden_states,
|
| 694 |
+
next_decoder_cache,
|
| 695 |
+
all_hidden_states,
|
| 696 |
+
all_self_attentions,
|
| 697 |
+
all_cross_attentions,
|
| 698 |
+
]
|
| 699 |
+
if v is not None
|
| 700 |
+
)
|
| 701 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
| 702 |
+
last_hidden_state=hidden_states,
|
| 703 |
+
past_key_values=next_decoder_cache,
|
| 704 |
+
hidden_states=all_hidden_states,
|
| 705 |
+
attentions=all_self_attentions,
|
| 706 |
+
cross_attentions=all_cross_attentions,
|
| 707 |
+
)
|
| 708 |
+
|
| 709 |
+
|
| 710 |
+
# Copied from transformers.models.bert.modeling_bert.BertPooler
|
| 711 |
+
class RobertaPooler(nn.Module):
|
| 712 |
+
def __init__(self, config):
|
| 713 |
+
super().__init__()
|
| 714 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
| 715 |
+
self.activation = nn.Tanh()
|
| 716 |
+
|
| 717 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 718 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
| 719 |
+
# to the first token.
|
| 720 |
+
first_token_tensor = hidden_states[:, 0]
|
| 721 |
+
pooled_output = self.dense(first_token_tensor)
|
| 722 |
+
pooled_output = self.activation(pooled_output)
|
| 723 |
+
return pooled_output
|
| 724 |
+
|
| 725 |
+
|
| 726 |
+
class RobertaPreTrainedModel(PreTrainedModel):
|
| 727 |
+
"""
|
| 728 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
| 729 |
+
models.
|
| 730 |
+
"""
|
| 731 |
+
|
| 732 |
+
config_class = RobertaConfig
|
| 733 |
+
base_model_prefix = "roberta"
|
| 734 |
+
supports_gradient_checkpointing = True
|
| 735 |
+
|
| 736 |
+
# Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights
|
| 737 |
+
def _init_weights(self, module):
|
| 738 |
+
"""Initialize the weights"""
|
| 739 |
+
if isinstance(module, nn.Linear):
|
| 740 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
| 741 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
| 742 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 743 |
+
if module.bias is not None:
|
| 744 |
+
module.bias.data.zero_()
|
| 745 |
+
elif isinstance(module, nn.Embedding):
|
| 746 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 747 |
+
if module.padding_idx is not None:
|
| 748 |
+
module.weight.data[module.padding_idx].zero_()
|
| 749 |
+
elif isinstance(module, nn.LayerNorm):
|
| 750 |
+
if module.bias is not None:
|
| 751 |
+
module.bias.data.zero_()
|
| 752 |
+
module.weight.data.fill_(1.0)
|
| 753 |
+
|
| 754 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
| 755 |
+
if isinstance(module, RobertaEncoder):
|
| 756 |
+
module.gradient_checkpointing = value
|
| 757 |
+
|
| 758 |
+
def update_keys_to_ignore(self, config, del_keys_to_ignore):
|
| 759 |
+
"""Remove some keys from ignore list"""
|
| 760 |
+
if not config.tie_word_embeddings:
|
| 761 |
+
# must make a new list, or the class variable gets modified!
|
| 762 |
+
self._keys_to_ignore_on_save = [
|
| 763 |
+
k for k in self._keys_to_ignore_on_save if k not in del_keys_to_ignore
|
| 764 |
+
]
|
| 765 |
+
self._keys_to_ignore_on_load_missing = [
|
| 766 |
+
k
|
| 767 |
+
for k in self._keys_to_ignore_on_load_missing
|
| 768 |
+
if k not in del_keys_to_ignore
|
| 769 |
+
]
|
| 770 |
+
|
| 771 |
+
|
| 772 |
+
ROBERTA_START_DOCSTRING = r"""
|
| 773 |
+
|
| 774 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
| 775 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
| 776 |
+
etc.)
|
| 777 |
+
|
| 778 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
| 779 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
| 780 |
+
and behavior.
|
| 781 |
+
|
| 782 |
+
Parameters:
|
| 783 |
+
config ([`RobertaConfig`]): Model configuration class with all the parameters of the
|
| 784 |
+
model. Initializing with a config file does not load the weights associated with the model, only the
|
| 785 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
| 786 |
+
"""
|
| 787 |
+
|
| 788 |
+
|
| 789 |
+
ROBERTA_INPUTS_DOCSTRING = r"""
|
| 790 |
+
Args:
|
| 791 |
+
input_ids (`torch.LongTensor` of shape `({0})`):
|
| 792 |
+
Indices of input sequence tokens in the vocabulary.
|
| 793 |
+
|
| 794 |
+
Indices can be obtained using [`RobertaTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 795 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 796 |
+
|
| 797 |
+
[What are input IDs?](../glossary#input-ids)
|
| 798 |
+
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
| 799 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 800 |
+
|
| 801 |
+
- 1 for tokens that are **not masked**,
|
| 802 |
+
- 0 for tokens that are **masked**.
|
| 803 |
+
|
| 804 |
+
[What are attention masks?](../glossary#attention-mask)
|
| 805 |
+
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
| 806 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
| 807 |
+
1]`:
|
| 808 |
+
|
| 809 |
+
- 0 corresponds to a *sentence A* token,
|
| 810 |
+
- 1 corresponds to a *sentence B* token.
|
| 811 |
+
|
| 812 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
| 813 |
+
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
| 814 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
| 815 |
+
config.max_position_embeddings - 1]`.
|
| 816 |
+
|
| 817 |
+
[What are position IDs?](../glossary#position-ids)
|
| 818 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
| 819 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
| 820 |
+
|
| 821 |
+
- 1 indicates the head is **not masked**,
|
| 822 |
+
- 0 indicates the head is **masked**.
|
| 823 |
+
|
| 824 |
+
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
| 825 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
| 826 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
| 827 |
+
model's internal embedding lookup matrix.
|
| 828 |
+
output_attentions (`bool`, *optional*):
|
| 829 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 830 |
+
tensors for more detail.
|
| 831 |
+
output_hidden_states (`bool`, *optional*):
|
| 832 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 833 |
+
more detail.
|
| 834 |
+
return_dict (`bool`, *optional*):
|
| 835 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 836 |
+
"""
|
| 837 |
+
|
| 838 |
+
|
| 839 |
+
class RobertaModel(RobertaPreTrainedModel):
|
| 840 |
+
"""
|
| 841 |
+
|
| 842 |
+
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
|
| 843 |
+
cross-attention is added between the self-attention layers, following the architecture described in *Attention is
|
| 844 |
+
all you need*_ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
|
| 845 |
+
Kaiser and Illia Polosukhin.
|
| 846 |
+
|
| 847 |
+
To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
|
| 848 |
+
to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
|
| 849 |
+
`add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
|
| 850 |
+
|
| 851 |
+
.. _*Attention is all you need*: https://arxiv.org/abs/1706.03762
|
| 852 |
+
|
| 853 |
+
"""
|
| 854 |
+
|
| 855 |
+
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
| 856 |
+
|
| 857 |
+
# Copied from transformers.models.bert.modeling_bert.BertModel.__init__ with Bert->Roberta
|
| 858 |
+
def __init__(self, config, add_pooling_layer=True):
|
| 859 |
+
super().__init__(config)
|
| 860 |
+
self.config = config
|
| 861 |
+
|
| 862 |
+
self.embeddings = RobertaEmbeddings(config)
|
| 863 |
+
self.encoder = RobertaEncoder(config)
|
| 864 |
+
|
| 865 |
+
self.pooler = RobertaPooler(config) if add_pooling_layer else None
|
| 866 |
+
|
| 867 |
+
# Initialize weights and apply final processing
|
| 868 |
+
self.post_init()
|
| 869 |
+
|
| 870 |
+
def get_input_embeddings(self):
|
| 871 |
+
return self.embeddings.word_embeddings
|
| 872 |
+
|
| 873 |
+
def set_input_embeddings(self, value):
|
| 874 |
+
self.embeddings.word_embeddings = value
|
| 875 |
+
|
| 876 |
+
def _prune_heads(self, heads_to_prune):
|
| 877 |
+
"""
|
| 878 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
| 879 |
+
class PreTrainedModel
|
| 880 |
+
"""
|
| 881 |
+
for layer, heads in heads_to_prune.items():
|
| 882 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
| 883 |
+
|
| 884 |
+
# Copied from transformers.models.bert.modeling_bert.BertModel.forward
|
| 885 |
+
def forward(
|
| 886 |
+
self,
|
| 887 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 888 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 889 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
| 890 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 891 |
+
head_mask: Optional[torch.Tensor] = None,
|
| 892 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 893 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 894 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
| 895 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 896 |
+
use_cache: Optional[bool] = None,
|
| 897 |
+
output_attentions: Optional[bool] = None,
|
| 898 |
+
output_hidden_states: Optional[bool] = None,
|
| 899 |
+
return_dict: Optional[bool] = None,
|
| 900 |
+
parser_att_mask=None,
|
| 901 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
|
| 902 |
+
r"""
|
| 903 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
| 904 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
| 905 |
+
the model is configured as a decoder.
|
| 906 |
+
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 907 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
| 908 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
| 909 |
+
|
| 910 |
+
- 1 for tokens that are **not masked**,
|
| 911 |
+
- 0 for tokens that are **masked**.
|
| 912 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
| 913 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
| 914 |
+
|
| 915 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
| 916 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
| 917 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
| 918 |
+
use_cache (`bool`, *optional*):
|
| 919 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
| 920 |
+
`past_key_values`).
|
| 921 |
+
"""
|
| 922 |
+
output_attentions = (
|
| 923 |
+
output_attentions
|
| 924 |
+
if output_attentions is not None
|
| 925 |
+
else self.config.output_attentions
|
| 926 |
+
)
|
| 927 |
+
output_hidden_states = (
|
| 928 |
+
output_hidden_states
|
| 929 |
+
if output_hidden_states is not None
|
| 930 |
+
else self.config.output_hidden_states
|
| 931 |
+
)
|
| 932 |
+
return_dict = (
|
| 933 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
| 934 |
+
)
|
| 935 |
+
|
| 936 |
+
if self.config.is_decoder:
|
| 937 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 938 |
+
else:
|
| 939 |
+
use_cache = False
|
| 940 |
+
|
| 941 |
+
if input_ids is not None and inputs_embeds is not None:
|
| 942 |
+
raise ValueError(
|
| 943 |
+
"You cannot specify both input_ids and inputs_embeds at the same time"
|
| 944 |
+
)
|
| 945 |
+
elif input_ids is not None:
|
| 946 |
+
input_shape = input_ids.size()
|
| 947 |
+
elif inputs_embeds is not None:
|
| 948 |
+
input_shape = inputs_embeds.size()[:-1]
|
| 949 |
+
else:
|
| 950 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
| 951 |
+
|
| 952 |
+
batch_size, seq_length = input_shape
|
| 953 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
| 954 |
+
|
| 955 |
+
# past_key_values_length
|
| 956 |
+
past_key_values_length = (
|
| 957 |
+
past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
| 958 |
+
)
|
| 959 |
+
|
| 960 |
+
if attention_mask is None:
|
| 961 |
+
attention_mask = torch.ones(
|
| 962 |
+
((batch_size, seq_length + past_key_values_length)), device=device
|
| 963 |
+
)
|
| 964 |
+
|
| 965 |
+
if token_type_ids is None:
|
| 966 |
+
if hasattr(self.embeddings, "token_type_ids"):
|
| 967 |
+
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
|
| 968 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(
|
| 969 |
+
batch_size, seq_length
|
| 970 |
+
)
|
| 971 |
+
token_type_ids = buffered_token_type_ids_expanded
|
| 972 |
+
else:
|
| 973 |
+
token_type_ids = torch.zeros(
|
| 974 |
+
input_shape, dtype=torch.long, device=device
|
| 975 |
+
)
|
| 976 |
+
|
| 977 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
| 978 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
| 979 |
+
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(
|
| 980 |
+
attention_mask, input_shape, device
|
| 981 |
+
)
|
| 982 |
+
|
| 983 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
| 984 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
| 985 |
+
if self.config.is_decoder and encoder_hidden_states is not None:
|
| 986 |
+
(
|
| 987 |
+
encoder_batch_size,
|
| 988 |
+
encoder_sequence_length,
|
| 989 |
+
_,
|
| 990 |
+
) = encoder_hidden_states.size()
|
| 991 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
| 992 |
+
if encoder_attention_mask is None:
|
| 993 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
| 994 |
+
encoder_extended_attention_mask = self.invert_attention_mask(
|
| 995 |
+
encoder_attention_mask
|
| 996 |
+
)
|
| 997 |
+
else:
|
| 998 |
+
encoder_extended_attention_mask = None
|
| 999 |
+
|
| 1000 |
+
# Prepare head mask if needed
|
| 1001 |
+
# 1.0 in head_mask indicate we keep the head
|
| 1002 |
+
# attention_probs has shape bsz x n_heads x N x N
|
| 1003 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
| 1004 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
| 1005 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
| 1006 |
+
|
| 1007 |
+
embedding_output = self.embeddings(
|
| 1008 |
+
input_ids=input_ids,
|
| 1009 |
+
position_ids=position_ids,
|
| 1010 |
+
token_type_ids=token_type_ids,
|
| 1011 |
+
inputs_embeds=inputs_embeds,
|
| 1012 |
+
past_key_values_length=past_key_values_length,
|
| 1013 |
+
)
|
| 1014 |
+
encoder_outputs = self.encoder(
|
| 1015 |
+
embedding_output,
|
| 1016 |
+
attention_mask=extended_attention_mask,
|
| 1017 |
+
head_mask=head_mask,
|
| 1018 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 1019 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
| 1020 |
+
past_key_values=past_key_values,
|
| 1021 |
+
use_cache=use_cache,
|
| 1022 |
+
output_attentions=output_attentions,
|
| 1023 |
+
output_hidden_states=output_hidden_states,
|
| 1024 |
+
return_dict=return_dict,
|
| 1025 |
+
parser_att_mask=parser_att_mask,
|
| 1026 |
+
)
|
| 1027 |
+
sequence_output = encoder_outputs[0]
|
| 1028 |
+
pooled_output = (
|
| 1029 |
+
self.pooler(sequence_output) if self.pooler is not None else None
|
| 1030 |
+
)
|
| 1031 |
+
|
| 1032 |
+
if not return_dict:
|
| 1033 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
| 1034 |
+
|
| 1035 |
+
return BaseModelOutputWithPoolingAndCrossAttentions(
|
| 1036 |
+
last_hidden_state=sequence_output,
|
| 1037 |
+
pooler_output=pooled_output,
|
| 1038 |
+
past_key_values=encoder_outputs.past_key_values,
|
| 1039 |
+
hidden_states=encoder_outputs.hidden_states,
|
| 1040 |
+
attentions=encoder_outputs.attentions,
|
| 1041 |
+
cross_attentions=encoder_outputs.cross_attentions,
|
| 1042 |
+
)
|
| 1043 |
+
|
| 1044 |
+
|
| 1045 |
+
class StructRoberta(RobertaPreTrainedModel):
|
| 1046 |
+
_keys_to_ignore_on_save = [r"lm_head.decoder.weight", r"lm_head.decoder.bias"]
|
| 1047 |
+
_keys_to_ignore_on_load_missing = [
|
| 1048 |
+
r"position_ids",
|
| 1049 |
+
r"lm_head.decoder.weight",
|
| 1050 |
+
r"lm_head.decoder.bias",
|
| 1051 |
+
]
|
| 1052 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
| 1053 |
+
|
| 1054 |
+
def __init__(self, config):
|
| 1055 |
+
super().__init__(config)
|
| 1056 |
+
|
| 1057 |
+
if config.is_decoder:
|
| 1058 |
+
logger.warning(
|
| 1059 |
+
"If you want to use `RobertaForMaskedLM` make sure `config.is_decoder=False` for "
|
| 1060 |
+
"bi-directional self-attention."
|
| 1061 |
+
)
|
| 1062 |
+
|
| 1063 |
+
|
| 1064 |
+
if config.n_cntxt_layers > 0:
|
| 1065 |
+
config_cntxt = copy.deepcopy(config)
|
| 1066 |
+
config_cntxt.num_hidden_layers = config.n_cntxt_layers
|
| 1067 |
+
|
| 1068 |
+
self.cntxt_layers = RobertaModel(config_cntxt, add_pooling_layer=False)
|
| 1069 |
+
|
| 1070 |
+
if config.n_cntxt_layers_2 > 0:
|
| 1071 |
+
self.parser_layers_1 = nn.ModuleList(
|
| 1072 |
+
[
|
| 1073 |
+
nn.Sequential(
|
| 1074 |
+
Conv1d(config.hidden_size, config.conv_size),
|
| 1075 |
+
nn.LayerNorm(config.hidden_size, elementwise_affine=False),
|
| 1076 |
+
nn.Tanh(),
|
| 1077 |
+
)
|
| 1078 |
+
for i in range(int(config.n_parser_layers/2))
|
| 1079 |
+
]
|
| 1080 |
+
)
|
| 1081 |
+
|
| 1082 |
+
self.distance_ff_1 = nn.Sequential(
|
| 1083 |
+
Conv1d(config.hidden_size, 2),
|
| 1084 |
+
nn.LayerNorm(config.hidden_size, elementwise_affine=False),
|
| 1085 |
+
nn.Tanh(),
|
| 1086 |
+
nn.Linear(config.hidden_size, 1),
|
| 1087 |
+
)
|
| 1088 |
+
|
| 1089 |
+
self.height_ff_1 = nn.Sequential(
|
| 1090 |
+
nn.Linear(config.hidden_size, config.hidden_size),
|
| 1091 |
+
nn.LayerNorm(config.hidden_size, elementwise_affine=False),
|
| 1092 |
+
nn.Tanh(),
|
| 1093 |
+
nn.Linear(config.hidden_size, 1),
|
| 1094 |
+
)
|
| 1095 |
+
|
| 1096 |
+
n_rel = len(config.relations)
|
| 1097 |
+
self._rel_weight_1 = nn.Parameter(
|
| 1098 |
+
torch.zeros((config.n_cntxt_layers_2, config.num_attention_heads, n_rel))
|
| 1099 |
+
)
|
| 1100 |
+
self._rel_weight_1.data.normal_(0, 0.1)
|
| 1101 |
+
|
| 1102 |
+
self._scaler_1 = nn.Parameter(torch.zeros(2))
|
| 1103 |
+
|
| 1104 |
+
config_cntxt_2 = copy.deepcopy(config)
|
| 1105 |
+
config_cntxt_2.num_hidden_layers = config.n_cntxt_layers_2
|
| 1106 |
+
|
| 1107 |
+
self.cntxt_layers_2 = RobertaModel(config_cntxt_2, add_pooling_layer=False)
|
| 1108 |
+
|
| 1109 |
+
|
| 1110 |
+
self.parser_layers_2 = nn.ModuleList(
|
| 1111 |
+
[
|
| 1112 |
+
nn.Sequential(
|
| 1113 |
+
Conv1d(config.hidden_size, config.conv_size),
|
| 1114 |
+
nn.LayerNorm(config.hidden_size, elementwise_affine=False),
|
| 1115 |
+
nn.Tanh(),
|
| 1116 |
+
)
|
| 1117 |
+
for i in range(int(config.n_parser_layers/2))
|
| 1118 |
+
]
|
| 1119 |
+
)
|
| 1120 |
+
|
| 1121 |
+
self.distance_ff_2 = nn.Sequential(
|
| 1122 |
+
Conv1d(config.hidden_size, 2),
|
| 1123 |
+
nn.LayerNorm(config.hidden_size, elementwise_affine=False),
|
| 1124 |
+
nn.Tanh(),
|
| 1125 |
+
nn.Linear(config.hidden_size, 1),
|
| 1126 |
+
)
|
| 1127 |
+
|
| 1128 |
+
self.height_ff_2 = nn.Sequential(
|
| 1129 |
+
nn.Linear(config.hidden_size, config.hidden_size),
|
| 1130 |
+
nn.LayerNorm(config.hidden_size, elementwise_affine=False),
|
| 1131 |
+
nn.Tanh(),
|
| 1132 |
+
nn.Linear(config.hidden_size, 1),
|
| 1133 |
+
)
|
| 1134 |
+
|
| 1135 |
+
n_rel = len(config.relations)
|
| 1136 |
+
self._rel_weight_2 = nn.Parameter(
|
| 1137 |
+
torch.zeros((config.num_hidden_layers, config.num_attention_heads, n_rel))
|
| 1138 |
+
)
|
| 1139 |
+
self._rel_weight_2.data.normal_(0, 0.1)
|
| 1140 |
+
|
| 1141 |
+
self._scaler_2 = nn.Parameter(torch.zeros(2))
|
| 1142 |
+
|
| 1143 |
+
else:
|
| 1144 |
+
self.parser_layers = nn.ModuleList(
|
| 1145 |
+
[
|
| 1146 |
+
nn.Sequential(
|
| 1147 |
+
Conv1d(config.hidden_size, config.conv_size),
|
| 1148 |
+
nn.LayerNorm(config.hidden_size, elementwise_affine=False),
|
| 1149 |
+
nn.Tanh(),
|
| 1150 |
+
)
|
| 1151 |
+
for i in range(config.n_parser_layers)
|
| 1152 |
+
]
|
| 1153 |
+
)
|
| 1154 |
+
|
| 1155 |
+
self.distance_ff = nn.Sequential(
|
| 1156 |
+
Conv1d(config.hidden_size, 2),
|
| 1157 |
+
nn.LayerNorm(config.hidden_size, elementwise_affine=False),
|
| 1158 |
+
nn.Tanh(),
|
| 1159 |
+
nn.Linear(config.hidden_size, 1),
|
| 1160 |
+
)
|
| 1161 |
+
|
| 1162 |
+
self.height_ff = nn.Sequential(
|
| 1163 |
+
nn.Linear(config.hidden_size, config.hidden_size),
|
| 1164 |
+
nn.LayerNorm(config.hidden_size, elementwise_affine=False),
|
| 1165 |
+
nn.Tanh(),
|
| 1166 |
+
nn.Linear(config.hidden_size, 1),
|
| 1167 |
+
)
|
| 1168 |
+
|
| 1169 |
+
n_rel = len(config.relations)
|
| 1170 |
+
self._rel_weight = nn.Parameter(
|
| 1171 |
+
torch.zeros((config.num_hidden_layers, config.num_attention_heads, n_rel))
|
| 1172 |
+
)
|
| 1173 |
+
self._rel_weight.data.normal_(0, 0.1)
|
| 1174 |
+
|
| 1175 |
+
self._scaler = nn.Parameter(torch.zeros(2))
|
| 1176 |
+
|
| 1177 |
+
self.roberta = RobertaModel(config, add_pooling_layer=False)
|
| 1178 |
+
|
| 1179 |
+
if config.n_cntxt_layers > 0:
|
| 1180 |
+
self.cntxt_layers.embeddings = self.roberta.embeddings
|
| 1181 |
+
if config.n_cntxt_layers_2 > 0:
|
| 1182 |
+
self.cntxt_layers_2.embeddings = self.roberta.embeddings
|
| 1183 |
+
|
| 1184 |
+
self.lm_head = RobertaLMHead(config)
|
| 1185 |
+
|
| 1186 |
+
self.pad = config.pad_token_id
|
| 1187 |
+
|
| 1188 |
+
# The LM head weights require special treatment only when they are tied with the word embeddings
|
| 1189 |
+
self.update_keys_to_ignore(config, ["lm_head.decoder.weight"])
|
| 1190 |
+
|
| 1191 |
+
# Initialize weights and apply final processing
|
| 1192 |
+
self.post_init()
|
| 1193 |
+
|
| 1194 |
+
def get_output_embeddings(self):
|
| 1195 |
+
return self.lm_head.decoder
|
| 1196 |
+
|
| 1197 |
+
def set_output_embeddings(self, new_embeddings):
|
| 1198 |
+
self.lm_head.decoder = new_embeddings
|
| 1199 |
+
|
| 1200 |
+
@property
|
| 1201 |
+
def scaler(self):
|
| 1202 |
+
return self._scaler.exp()
|
| 1203 |
+
|
| 1204 |
+
@property
|
| 1205 |
+
def scaler_1(self):
|
| 1206 |
+
return self._scaler_1.exp()
|
| 1207 |
+
|
| 1208 |
+
@property
|
| 1209 |
+
def scaler_2(self):
|
| 1210 |
+
return self._scaler_2.exp()
|
| 1211 |
+
|
| 1212 |
+
@property
|
| 1213 |
+
def rel_weight(self):
|
| 1214 |
+
if self.config.weight_act == "sigmoid":
|
| 1215 |
+
return torch.sigmoid(self._rel_weight)
|
| 1216 |
+
elif self.config.weight_act == "softmax":
|
| 1217 |
+
return torch.softmax(self._rel_weight, dim=-1)
|
| 1218 |
+
|
| 1219 |
+
@property
|
| 1220 |
+
def rel_weight_1(self):
|
| 1221 |
+
if self.config.weight_act == "sigmoid":
|
| 1222 |
+
return torch.sigmoid(self._rel_weight_1)
|
| 1223 |
+
elif self.config.weight_act == "softmax":
|
| 1224 |
+
return torch.softmax(self._rel_weight_1, dim=-1)
|
| 1225 |
+
|
| 1226 |
+
|
| 1227 |
+
@property
|
| 1228 |
+
def rel_weight_2(self):
|
| 1229 |
+
if self.config.weight_act == "sigmoid":
|
| 1230 |
+
return torch.sigmoid(self._rel_weight_2)
|
| 1231 |
+
elif self.config.weight_act == "softmax":
|
| 1232 |
+
return torch.softmax(self._rel_weight_2, dim=-1)
|
| 1233 |
+
|
| 1234 |
+
|
| 1235 |
+
def compute_block(self, distance, height, n_cntxt_layers=0):
|
| 1236 |
+
"""Compute constituents from distance and height."""
|
| 1237 |
+
|
| 1238 |
+
if n_cntxt_layers>0:
|
| 1239 |
+
if n_cntxt_layers == 1:
|
| 1240 |
+
beta_logits = (distance[:, None, :] - height[:, :, None]) * self.scaler_1[0]
|
| 1241 |
+
elif n_cntxt_layers == 2:
|
| 1242 |
+
beta_logits = (distance[:, None, :] - height[:, :, None]) * self.scaler_2[0]
|
| 1243 |
+
else:
|
| 1244 |
+
beta_logits = (distance[:, None, :] - height[:, :, None]) * self.scaler[0]
|
| 1245 |
+
|
| 1246 |
+
gamma = torch.sigmoid(-beta_logits)
|
| 1247 |
+
ones = torch.ones_like(gamma)
|
| 1248 |
+
|
| 1249 |
+
block_mask_left = cummin(
|
| 1250 |
+
gamma.tril(-1) + ones.triu(0), reverse=True, max_value=1
|
| 1251 |
+
)
|
| 1252 |
+
block_mask_left = block_mask_left - F.pad(
|
| 1253 |
+
block_mask_left[:, :, :-1], (1, 0), value=0
|
| 1254 |
+
)
|
| 1255 |
+
block_mask_left.tril_(0)
|
| 1256 |
+
|
| 1257 |
+
block_mask_right = cummin(
|
| 1258 |
+
gamma.triu(0) + ones.tril(-1), exclusive=True, max_value=1
|
| 1259 |
+
)
|
| 1260 |
+
block_mask_right = block_mask_right - F.pad(
|
| 1261 |
+
block_mask_right[:, :, 1:], (0, 1), value=0
|
| 1262 |
+
)
|
| 1263 |
+
block_mask_right.triu_(0)
|
| 1264 |
+
|
| 1265 |
+
block_p = block_mask_left[:, :, :, None] * block_mask_right[:, :, None, :]
|
| 1266 |
+
block = cumsum(block_mask_left).tril(0) + cumsum(
|
| 1267 |
+
block_mask_right, reverse=True
|
| 1268 |
+
).triu(1)
|
| 1269 |
+
|
| 1270 |
+
return block_p, block
|
| 1271 |
+
|
| 1272 |
+
def compute_head(self, height, n_cntxt_layers=0):
|
| 1273 |
+
"""Estimate head for each constituent."""
|
| 1274 |
+
|
| 1275 |
+
_, length = height.size()
|
| 1276 |
+
if n_cntxt_layers>0:
|
| 1277 |
+
if n_cntxt_layers == 1:
|
| 1278 |
+
head_logits = height * self.scaler_1[1]
|
| 1279 |
+
elif n_cntxt_layers == 2:
|
| 1280 |
+
head_logits = height * self.scaler_2[1]
|
| 1281 |
+
else:
|
| 1282 |
+
head_logits = height * self.scaler[1]
|
| 1283 |
+
index = torch.arange(length, device=height.device)
|
| 1284 |
+
|
| 1285 |
+
mask = (index[:, None, None] <= index[None, None, :]) * (
|
| 1286 |
+
index[None, None, :] <= index[None, :, None]
|
| 1287 |
+
)
|
| 1288 |
+
head_logits = head_logits[:, None, None, :].repeat(1, length, length, 1)
|
| 1289 |
+
head_logits.masked_fill_(~mask[None, :, :, :], -1e9)
|
| 1290 |
+
|
| 1291 |
+
head_p = torch.softmax(head_logits, dim=-1)
|
| 1292 |
+
|
| 1293 |
+
return head_p
|
| 1294 |
+
|
| 1295 |
+
def parse(self, x, embs=None, n_cntxt_layers=0):
|
| 1296 |
+
"""Parse input sentence.
|
| 1297 |
+
|
| 1298 |
+
Args:
|
| 1299 |
+
x: input tokens (required).
|
| 1300 |
+
pos: position for each token (optional).
|
| 1301 |
+
Returns:
|
| 1302 |
+
distance: syntactic distance
|
| 1303 |
+
height: syntactic height
|
| 1304 |
+
"""
|
| 1305 |
+
|
| 1306 |
+
mask = x != self.pad
|
| 1307 |
+
mask_shifted = F.pad(mask[:, 1:], (0, 1), value=0)
|
| 1308 |
+
|
| 1309 |
+
if embs is None:
|
| 1310 |
+
h = self.roberta.embeddings(x)
|
| 1311 |
+
else:
|
| 1312 |
+
h = embs
|
| 1313 |
+
|
| 1314 |
+
if n_cntxt_layers > 0:
|
| 1315 |
+
if n_cntxt_layers == 1:
|
| 1316 |
+
parser_layers = self.parser_layers_1
|
| 1317 |
+
height_ff = self.height_ff_1
|
| 1318 |
+
distance_ff = self.distance_ff_1
|
| 1319 |
+
elif n_cntxt_layers == 2:
|
| 1320 |
+
parser_layers = self.parser_layers_2
|
| 1321 |
+
height_ff = self.height_ff_2
|
| 1322 |
+
distance_ff = self.distance_ff_2
|
| 1323 |
+
for i in range(int(self.config.n_parser_layers/2)):
|
| 1324 |
+
h = h.masked_fill(~mask[:, :, None], 0)
|
| 1325 |
+
h = parser_layers[i](h)
|
| 1326 |
+
|
| 1327 |
+
height = height_ff(h).squeeze(-1)
|
| 1328 |
+
height.masked_fill_(~mask, -1e9)
|
| 1329 |
+
|
| 1330 |
+
distance = distance_ff(h).squeeze(-1)
|
| 1331 |
+
distance.masked_fill_(~mask_shifted, 1e9)
|
| 1332 |
+
|
| 1333 |
+
# Calbrating the distance and height to the same level
|
| 1334 |
+
length = distance.size(1)
|
| 1335 |
+
height_max = height[:, None, :].expand(-1, length, -1)
|
| 1336 |
+
height_max = torch.cummax(
|
| 1337 |
+
height_max.triu(0) - torch.ones_like(height_max).tril(-1) * 1e9, dim=-1
|
| 1338 |
+
)[0].triu(0)
|
| 1339 |
+
|
| 1340 |
+
margin_left = torch.relu(
|
| 1341 |
+
F.pad(distance[:, :-1, None], (0, 0, 1, 0), value=1e9) - height_max
|
| 1342 |
+
)
|
| 1343 |
+
margin_right = torch.relu(distance[:, None, :] - height_max)
|
| 1344 |
+
margin = torch.where(
|
| 1345 |
+
margin_left > margin_right, margin_right, margin_left
|
| 1346 |
+
).triu(0)
|
| 1347 |
+
|
| 1348 |
+
margin_mask = torch.stack([mask_shifted] + [mask] * (length - 1), dim=1)
|
| 1349 |
+
margin.masked_fill_(~margin_mask, 0)
|
| 1350 |
+
margin = margin.max()
|
| 1351 |
+
|
| 1352 |
+
distance = distance - margin
|
| 1353 |
+
else:
|
| 1354 |
+
for i in range(self.config.n_parser_layers):
|
| 1355 |
+
h = h.masked_fill(~mask[:, :, None], 0)
|
| 1356 |
+
h = self.parser_layers[i](h)
|
| 1357 |
+
|
| 1358 |
+
height = self.height_ff(h).squeeze(-1)
|
| 1359 |
+
height.masked_fill_(~mask, -1e9)
|
| 1360 |
+
|
| 1361 |
+
distance = self.distance_ff(h).squeeze(-1)
|
| 1362 |
+
distance.masked_fill_(~mask_shifted, 1e9)
|
| 1363 |
+
|
| 1364 |
+
# Calbrating the distance and height to the same level
|
| 1365 |
+
length = distance.size(1)
|
| 1366 |
+
height_max = height[:, None, :].expand(-1, length, -1)
|
| 1367 |
+
height_max = torch.cummax(
|
| 1368 |
+
height_max.triu(0) - torch.ones_like(height_max).tril(-1) * 1e9, dim=-1
|
| 1369 |
+
)[0].triu(0)
|
| 1370 |
+
|
| 1371 |
+
margin_left = torch.relu(
|
| 1372 |
+
F.pad(distance[:, :-1, None], (0, 0, 1, 0), value=1e9) - height_max
|
| 1373 |
+
)
|
| 1374 |
+
margin_right = torch.relu(distance[:, None, :] - height_max)
|
| 1375 |
+
margin = torch.where(
|
| 1376 |
+
margin_left > margin_right, margin_right, margin_left
|
| 1377 |
+
).triu(0)
|
| 1378 |
+
|
| 1379 |
+
margin_mask = torch.stack([mask_shifted] + [mask] * (length - 1), dim=1)
|
| 1380 |
+
margin.masked_fill_(~margin_mask, 0)
|
| 1381 |
+
margin = margin.max()
|
| 1382 |
+
|
| 1383 |
+
distance = distance - margin
|
| 1384 |
+
|
| 1385 |
+
return distance, height
|
| 1386 |
+
|
| 1387 |
+
def generate_mask(self, x, distance, height, n_cntxt_layers=0):
|
| 1388 |
+
"""Compute head and cibling distribution for each token."""
|
| 1389 |
+
|
| 1390 |
+
bsz, length = x.size()
|
| 1391 |
+
|
| 1392 |
+
eye = torch.eye(length, device=x.device, dtype=torch.bool)
|
| 1393 |
+
eye = eye[None, :, :].expand((bsz, -1, -1))
|
| 1394 |
+
|
| 1395 |
+
block_p, block = self.compute_block(distance, height, n_cntxt_layers=n_cntxt_layers)
|
| 1396 |
+
head_p = self.compute_head(height, n_cntxt_layers=n_cntxt_layers)
|
| 1397 |
+
head = torch.einsum("blij,bijh->blh", block_p, head_p)
|
| 1398 |
+
head = head.masked_fill(eye, 0)
|
| 1399 |
+
child = head.transpose(1, 2)
|
| 1400 |
+
cibling = torch.bmm(head, child).masked_fill(eye, 0)
|
| 1401 |
+
|
| 1402 |
+
rel_list = []
|
| 1403 |
+
if "head" in self.config.relations:
|
| 1404 |
+
rel_list.append(head)
|
| 1405 |
+
if "child" in self.config.relations:
|
| 1406 |
+
rel_list.append(child)
|
| 1407 |
+
if "cibling" in self.config.relations:
|
| 1408 |
+
rel_list.append(cibling)
|
| 1409 |
+
|
| 1410 |
+
rel = torch.stack(rel_list, dim=1)
|
| 1411 |
+
|
| 1412 |
+
if n_cntxt_layers > 0:
|
| 1413 |
+
if n_cntxt_layers == 1:
|
| 1414 |
+
rel_weight = self.rel_weight_1
|
| 1415 |
+
elif n_cntxt_layers == 2:
|
| 1416 |
+
rel_weight = self.rel_weight_2
|
| 1417 |
+
else:
|
| 1418 |
+
rel_weight = self.rel_weight
|
| 1419 |
+
|
| 1420 |
+
dep = torch.einsum("lhr,brij->lbhij", rel_weight, rel)
|
| 1421 |
+
|
| 1422 |
+
if n_cntxt_layers == 1:
|
| 1423 |
+
num_layers = self.cntxt_layers_2.config.num_hidden_layers
|
| 1424 |
+
else:
|
| 1425 |
+
num_layers = self.roberta.config.num_hidden_layers
|
| 1426 |
+
|
| 1427 |
+
att_mask = dep.reshape(
|
| 1428 |
+
num_layers,
|
| 1429 |
+
bsz,
|
| 1430 |
+
self.config.num_attention_heads,
|
| 1431 |
+
length,
|
| 1432 |
+
length,
|
| 1433 |
+
)
|
| 1434 |
+
|
| 1435 |
+
return att_mask, cibling, head, block
|
| 1436 |
+
|
| 1437 |
+
def forward(
|
| 1438 |
+
self,
|
| 1439 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 1440 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 1441 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
| 1442 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1443 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 1444 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1445 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
| 1446 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 1447 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1448 |
+
output_attentions: Optional[bool] = None,
|
| 1449 |
+
output_hidden_states: Optional[bool] = None,
|
| 1450 |
+
return_dict: Optional[bool] = None,
|
| 1451 |
+
) -> Union[Tuple, MaskedLMOutput]:
|
| 1452 |
+
r"""
|
| 1453 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1454 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
| 1455 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
|
| 1456 |
+
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
| 1457 |
+
kwargs (`Dict[str, any]`, optional, defaults to *{}*):
|
| 1458 |
+
Used to hide legacy arguments that have been deprecated.
|
| 1459 |
+
"""
|
| 1460 |
+
return_dict = (
|
| 1461 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
| 1462 |
+
)
|
| 1463 |
+
|
| 1464 |
+
|
| 1465 |
+
if self.config.n_cntxt_layers > 0:
|
| 1466 |
+
cntxt_outputs = self.cntxt_layers(
|
| 1467 |
+
input_ids,
|
| 1468 |
+
attention_mask=attention_mask,
|
| 1469 |
+
token_type_ids=token_type_ids,
|
| 1470 |
+
position_ids=position_ids,
|
| 1471 |
+
head_mask=head_mask,
|
| 1472 |
+
inputs_embeds=inputs_embeds,
|
| 1473 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 1474 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 1475 |
+
output_attentions=output_attentions,
|
| 1476 |
+
output_hidden_states=output_hidden_states,
|
| 1477 |
+
return_dict=return_dict)
|
| 1478 |
+
|
| 1479 |
+
|
| 1480 |
+
if self.config.n_cntxt_layers_2 > 0:
|
| 1481 |
+
distance_1, height_1 = self.parse(input_ids, cntxt_outputs[0], n_cntxt_layers=1)
|
| 1482 |
+
att_mask_1, _, _, _ = self.generate_mask(input_ids, distance_1, height_1, n_cntxt_layers=1)
|
| 1483 |
+
|
| 1484 |
+
cntxt_outputs_2 = self.cntxt_layers_2(
|
| 1485 |
+
input_ids,
|
| 1486 |
+
attention_mask=attention_mask,
|
| 1487 |
+
token_type_ids=token_type_ids,
|
| 1488 |
+
position_ids=position_ids,
|
| 1489 |
+
head_mask=head_mask,
|
| 1490 |
+
inputs_embeds=inputs_embeds,
|
| 1491 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 1492 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 1493 |
+
output_attentions=output_attentions,
|
| 1494 |
+
output_hidden_states=output_hidden_states,
|
| 1495 |
+
return_dict=return_dict,
|
| 1496 |
+
parser_att_mask=att_mask_1)
|
| 1497 |
+
|
| 1498 |
+
sequence_output = cntxt_outputs_2[0]
|
| 1499 |
+
|
| 1500 |
+
distance_2, height_2 = self.parse(input_ids, sequence_output[0], n_cntxt_layers=2)
|
| 1501 |
+
att_mask, _, _, _ = self.generate_mask(input_ids, distance_2, height_2, n_cntxt_layers=2)
|
| 1502 |
+
|
| 1503 |
+
elif self.config.n_cntxt_layers > 0:
|
| 1504 |
+
distance, height = self.parse(input_ids, cntxt_outputs[0])
|
| 1505 |
+
att_mask, _, _, _ = self.generate_mask(input_ids, distance, height)
|
| 1506 |
+
else:
|
| 1507 |
+
distance, height = self.parse(input_ids)
|
| 1508 |
+
att_mask, _, _, _ = self.generate_mask(input_ids, distance, height)
|
| 1509 |
+
|
| 1510 |
+
outputs = self.roberta(
|
| 1511 |
+
input_ids,
|
| 1512 |
+
attention_mask=attention_mask,
|
| 1513 |
+
token_type_ids=token_type_ids,
|
| 1514 |
+
position_ids=position_ids,
|
| 1515 |
+
head_mask=head_mask,
|
| 1516 |
+
inputs_embeds=inputs_embeds,
|
| 1517 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 1518 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 1519 |
+
output_attentions=output_attentions,
|
| 1520 |
+
output_hidden_states=output_hidden_states,
|
| 1521 |
+
return_dict=return_dict,
|
| 1522 |
+
parser_att_mask=att_mask,
|
| 1523 |
+
)
|
| 1524 |
+
sequence_output = outputs[0]
|
| 1525 |
+
prediction_scores = self.lm_head(sequence_output)
|
| 1526 |
+
|
| 1527 |
+
masked_lm_loss = None
|
| 1528 |
+
if labels is not None:
|
| 1529 |
+
loss_fct = CrossEntropyLoss()
|
| 1530 |
+
masked_lm_loss = loss_fct(
|
| 1531 |
+
prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)
|
| 1532 |
+
)
|
| 1533 |
+
|
| 1534 |
+
if not return_dict:
|
| 1535 |
+
output = (prediction_scores,) + outputs[2:]
|
| 1536 |
+
return (
|
| 1537 |
+
((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
| 1538 |
+
)
|
| 1539 |
+
|
| 1540 |
+
return MaskedLMOutput(
|
| 1541 |
+
loss=masked_lm_loss,
|
| 1542 |
+
logits=prediction_scores,
|
| 1543 |
+
hidden_states=outputs.hidden_states,
|
| 1544 |
+
attentions=outputs.attentions,
|
| 1545 |
+
)
|
| 1546 |
+
|
| 1547 |
+
|
| 1548 |
+
class RobertaLMHead(nn.Module):
|
| 1549 |
+
"""Roberta Head for masked language modeling."""
|
| 1550 |
+
|
| 1551 |
+
def __init__(self, config):
|
| 1552 |
+
super().__init__()
|
| 1553 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
| 1554 |
+
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 1555 |
+
|
| 1556 |
+
self.decoder = nn.Linear(config.hidden_size, config.vocab_size)
|
| 1557 |
+
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
| 1558 |
+
self.decoder.bias = self.bias
|
| 1559 |
+
|
| 1560 |
+
def forward(self, features, **kwargs):
|
| 1561 |
+
x = self.dense(features)
|
| 1562 |
+
x = gelu(x)
|
| 1563 |
+
x = self.layer_norm(x)
|
| 1564 |
+
|
| 1565 |
+
# project back to size of vocabulary with bias
|
| 1566 |
+
x = self.decoder(x)
|
| 1567 |
+
|
| 1568 |
+
return x
|
| 1569 |
+
|
| 1570 |
+
def _tie_weights(self):
|
| 1571 |
+
# To tie those two weights if they get disconnected (on TPU or when the bias is resized)
|
| 1572 |
+
self.bias = self.decoder.bias
|
| 1573 |
+
|
| 1574 |
+
|
| 1575 |
+
class StructRobertaForSequenceClassification(RobertaPreTrainedModel):
|
| 1576 |
+
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
| 1577 |
+
|
| 1578 |
+
def __init__(self, config):
|
| 1579 |
+
super().__init__(config)
|
| 1580 |
+
self.num_labels = config.num_labels
|
| 1581 |
+
self.config = config
|
| 1582 |
+
|
| 1583 |
+
if config.n_cntxt_layers > 0:
|
| 1584 |
+
config_cntxt = copy.deepcopy(config)
|
| 1585 |
+
config_cntxt.num_hidden_layers = config.n_cntxt_layers
|
| 1586 |
+
|
| 1587 |
+
self.cntxt_layers = RobertaModel(config_cntxt, add_pooling_layer=False)
|
| 1588 |
+
|
| 1589 |
+
if config.n_cntxt_layers_2 > 0:
|
| 1590 |
+
self.parser_layers_1 = nn.ModuleList(
|
| 1591 |
+
[
|
| 1592 |
+
nn.Sequential(
|
| 1593 |
+
Conv1d(config.hidden_size, config.conv_size),
|
| 1594 |
+
nn.LayerNorm(config.hidden_size, elementwise_affine=False),
|
| 1595 |
+
nn.Tanh(),
|
| 1596 |
+
)
|
| 1597 |
+
for i in range(int(config.n_parser_layers/2))
|
| 1598 |
+
]
|
| 1599 |
+
)
|
| 1600 |
+
|
| 1601 |
+
self.distance_ff_1 = nn.Sequential(
|
| 1602 |
+
Conv1d(config.hidden_size, 2),
|
| 1603 |
+
nn.LayerNorm(config.hidden_size, elementwise_affine=False),
|
| 1604 |
+
nn.Tanh(),
|
| 1605 |
+
nn.Linear(config.hidden_size, 1),
|
| 1606 |
+
)
|
| 1607 |
+
|
| 1608 |
+
self.height_ff_1 = nn.Sequential(
|
| 1609 |
+
nn.Linear(config.hidden_size, config.hidden_size),
|
| 1610 |
+
nn.LayerNorm(config.hidden_size, elementwise_affine=False),
|
| 1611 |
+
nn.Tanh(),
|
| 1612 |
+
nn.Linear(config.hidden_size, 1),
|
| 1613 |
+
)
|
| 1614 |
+
|
| 1615 |
+
n_rel = len(config.relations)
|
| 1616 |
+
self._rel_weight_1 = nn.Parameter(
|
| 1617 |
+
torch.zeros((config.n_cntxt_layers_2, config.num_attention_heads, n_rel))
|
| 1618 |
+
)
|
| 1619 |
+
self._rel_weight_1.data.normal_(0, 0.1)
|
| 1620 |
+
|
| 1621 |
+
self._scaler_1 = nn.Parameter(torch.zeros(2))
|
| 1622 |
+
|
| 1623 |
+
config_cntxt_2 = copy.deepcopy(config)
|
| 1624 |
+
config_cntxt_2.num_hidden_layers = config.n_cntxt_layers_2
|
| 1625 |
+
|
| 1626 |
+
self.cntxt_layers_2 = RobertaModel(config_cntxt_2, add_pooling_layer=False)
|
| 1627 |
+
|
| 1628 |
+
|
| 1629 |
+
self.parser_layers_2 = nn.ModuleList(
|
| 1630 |
+
[
|
| 1631 |
+
nn.Sequential(
|
| 1632 |
+
Conv1d(config.hidden_size, config.conv_size),
|
| 1633 |
+
nn.LayerNorm(config.hidden_size, elementwise_affine=False),
|
| 1634 |
+
nn.Tanh(),
|
| 1635 |
+
)
|
| 1636 |
+
for i in range(int(config.n_parser_layers/2))
|
| 1637 |
+
]
|
| 1638 |
+
)
|
| 1639 |
+
|
| 1640 |
+
self.distance_ff_2 = nn.Sequential(
|
| 1641 |
+
Conv1d(config.hidden_size, 2),
|
| 1642 |
+
nn.LayerNorm(config.hidden_size, elementwise_affine=False),
|
| 1643 |
+
nn.Tanh(),
|
| 1644 |
+
nn.Linear(config.hidden_size, 1),
|
| 1645 |
+
)
|
| 1646 |
+
|
| 1647 |
+
self.height_ff_2 = nn.Sequential(
|
| 1648 |
+
nn.Linear(config.hidden_size, config.hidden_size),
|
| 1649 |
+
nn.LayerNorm(config.hidden_size, elementwise_affine=False),
|
| 1650 |
+
nn.Tanh(),
|
| 1651 |
+
nn.Linear(config.hidden_size, 1),
|
| 1652 |
+
)
|
| 1653 |
+
|
| 1654 |
+
n_rel = len(config.relations)
|
| 1655 |
+
self._rel_weight_2 = nn.Parameter(
|
| 1656 |
+
torch.zeros((config.num_hidden_layers, config.num_attention_heads, n_rel))
|
| 1657 |
+
)
|
| 1658 |
+
self._rel_weight_2.data.normal_(0, 0.1)
|
| 1659 |
+
|
| 1660 |
+
self._scaler_2 = nn.Parameter(torch.zeros(2))
|
| 1661 |
+
|
| 1662 |
+
else:
|
| 1663 |
+
self.parser_layers = nn.ModuleList(
|
| 1664 |
+
[
|
| 1665 |
+
nn.Sequential(
|
| 1666 |
+
Conv1d(config.hidden_size, config.conv_size),
|
| 1667 |
+
nn.LayerNorm(config.hidden_size, elementwise_affine=False),
|
| 1668 |
+
nn.Tanh(),
|
| 1669 |
+
)
|
| 1670 |
+
for i in range(config.n_parser_layers)
|
| 1671 |
+
]
|
| 1672 |
+
)
|
| 1673 |
+
|
| 1674 |
+
self.distance_ff = nn.Sequential(
|
| 1675 |
+
Conv1d(config.hidden_size, 2),
|
| 1676 |
+
nn.LayerNorm(config.hidden_size, elementwise_affine=False),
|
| 1677 |
+
nn.Tanh(),
|
| 1678 |
+
nn.Linear(config.hidden_size, 1),
|
| 1679 |
+
)
|
| 1680 |
+
|
| 1681 |
+
self.height_ff = nn.Sequential(
|
| 1682 |
+
nn.Linear(config.hidden_size, config.hidden_size),
|
| 1683 |
+
nn.LayerNorm(config.hidden_size, elementwise_affine=False),
|
| 1684 |
+
nn.Tanh(),
|
| 1685 |
+
nn.Linear(config.hidden_size, 1),
|
| 1686 |
+
)
|
| 1687 |
+
|
| 1688 |
+
n_rel = len(config.relations)
|
| 1689 |
+
self._rel_weight = nn.Parameter(
|
| 1690 |
+
torch.zeros((config.num_hidden_layers, config.num_attention_heads, n_rel))
|
| 1691 |
+
)
|
| 1692 |
+
self._rel_weight.data.normal_(0, 0.1)
|
| 1693 |
+
|
| 1694 |
+
self._scaler = nn.Parameter(torch.zeros(2))
|
| 1695 |
+
|
| 1696 |
+
self.roberta = RobertaModel(config, add_pooling_layer=False)
|
| 1697 |
+
|
| 1698 |
+
if config.n_cntxt_layers > 0:
|
| 1699 |
+
self.cntxt_layers.embeddings = self.roberta.embeddings
|
| 1700 |
+
if config.n_cntxt_layers_2 > 0:
|
| 1701 |
+
self.cntxt_layers_2.embeddings = self.roberta.embeddings
|
| 1702 |
+
|
| 1703 |
+
|
| 1704 |
+
self.pad = config.pad_token_id
|
| 1705 |
+
self.classifier = RobertaClassificationHead(config)
|
| 1706 |
+
|
| 1707 |
+
# Initialize weights and apply final processing
|
| 1708 |
+
self.post_init()
|
| 1709 |
+
|
| 1710 |
+
|
| 1711 |
+
@property
|
| 1712 |
+
def scaler(self):
|
| 1713 |
+
return self._scaler.exp()
|
| 1714 |
+
|
| 1715 |
+
@property
|
| 1716 |
+
def scaler_1(self):
|
| 1717 |
+
return self._scaler_1.exp()
|
| 1718 |
+
|
| 1719 |
+
@property
|
| 1720 |
+
def scaler_2(self):
|
| 1721 |
+
return self._scaler_2.exp()
|
| 1722 |
+
|
| 1723 |
+
@property
|
| 1724 |
+
def rel_weight(self):
|
| 1725 |
+
if self.config.weight_act == "sigmoid":
|
| 1726 |
+
return torch.sigmoid(self._rel_weight)
|
| 1727 |
+
elif self.config.weight_act == "softmax":
|
| 1728 |
+
return torch.softmax(self._rel_weight, dim=-1)
|
| 1729 |
+
|
| 1730 |
+
@property
|
| 1731 |
+
def rel_weight_1(self):
|
| 1732 |
+
if self.config.weight_act == "sigmoid":
|
| 1733 |
+
return torch.sigmoid(self._rel_weight_1)
|
| 1734 |
+
elif self.config.weight_act == "softmax":
|
| 1735 |
+
return torch.softmax(self._rel_weight_1, dim=-1)
|
| 1736 |
+
|
| 1737 |
+
|
| 1738 |
+
@property
|
| 1739 |
+
def rel_weight_2(self):
|
| 1740 |
+
if self.config.weight_act == "sigmoid":
|
| 1741 |
+
return torch.sigmoid(self._rel_weight_2)
|
| 1742 |
+
elif self.config.weight_act == "softmax":
|
| 1743 |
+
return torch.softmax(self._rel_weight_2, dim=-1)
|
| 1744 |
+
|
| 1745 |
+
|
| 1746 |
+
def compute_block(self, distance, height, n_cntxt_layers=0):
|
| 1747 |
+
"""Compute constituents from distance and height."""
|
| 1748 |
+
|
| 1749 |
+
if n_cntxt_layers>0:
|
| 1750 |
+
if n_cntxt_layers == 1:
|
| 1751 |
+
beta_logits = (distance[:, None, :] - height[:, :, None]) * self.scaler_1[0]
|
| 1752 |
+
elif n_cntxt_layers == 2:
|
| 1753 |
+
beta_logits = (distance[:, None, :] - height[:, :, None]) * self.scaler_2[0]
|
| 1754 |
+
else:
|
| 1755 |
+
beta_logits = (distance[:, None, :] - height[:, :, None]) * self.scaler[0]
|
| 1756 |
+
|
| 1757 |
+
gamma = torch.sigmoid(-beta_logits)
|
| 1758 |
+
ones = torch.ones_like(gamma)
|
| 1759 |
+
|
| 1760 |
+
block_mask_left = cummin(
|
| 1761 |
+
gamma.tril(-1) + ones.triu(0), reverse=True, max_value=1
|
| 1762 |
+
)
|
| 1763 |
+
block_mask_left = block_mask_left - F.pad(
|
| 1764 |
+
block_mask_left[:, :, :-1], (1, 0), value=0
|
| 1765 |
+
)
|
| 1766 |
+
block_mask_left.tril_(0)
|
| 1767 |
+
|
| 1768 |
+
block_mask_right = cummin(
|
| 1769 |
+
gamma.triu(0) + ones.tril(-1), exclusive=True, max_value=1
|
| 1770 |
+
)
|
| 1771 |
+
block_mask_right = block_mask_right - F.pad(
|
| 1772 |
+
block_mask_right[:, :, 1:], (0, 1), value=0
|
| 1773 |
+
)
|
| 1774 |
+
block_mask_right.triu_(0)
|
| 1775 |
+
|
| 1776 |
+
block_p = block_mask_left[:, :, :, None] * block_mask_right[:, :, None, :]
|
| 1777 |
+
block = cumsum(block_mask_left).tril(0) + cumsum(
|
| 1778 |
+
block_mask_right, reverse=True
|
| 1779 |
+
).triu(1)
|
| 1780 |
+
|
| 1781 |
+
return block_p, block
|
| 1782 |
+
|
| 1783 |
+
def compute_head(self, height, n_cntxt_layers=0):
|
| 1784 |
+
"""Estimate head for each constituent."""
|
| 1785 |
+
|
| 1786 |
+
_, length = height.size()
|
| 1787 |
+
if n_cntxt_layers>0:
|
| 1788 |
+
if n_cntxt_layers == 1:
|
| 1789 |
+
head_logits = height * self.scaler_1[1]
|
| 1790 |
+
elif n_cntxt_layers == 2:
|
| 1791 |
+
head_logits = height * self.scaler_2[1]
|
| 1792 |
+
else:
|
| 1793 |
+
head_logits = height * self.scaler[1]
|
| 1794 |
+
index = torch.arange(length, device=height.device)
|
| 1795 |
+
|
| 1796 |
+
mask = (index[:, None, None] <= index[None, None, :]) * (
|
| 1797 |
+
index[None, None, :] <= index[None, :, None]
|
| 1798 |
+
)
|
| 1799 |
+
head_logits = head_logits[:, None, None, :].repeat(1, length, length, 1)
|
| 1800 |
+
head_logits.masked_fill_(~mask[None, :, :, :], -1e9)
|
| 1801 |
+
|
| 1802 |
+
head_p = torch.softmax(head_logits, dim=-1)
|
| 1803 |
+
|
| 1804 |
+
return head_p
|
| 1805 |
+
|
| 1806 |
+
def parse(self, x, embs=None, n_cntxt_layers=0):
|
| 1807 |
+
"""Parse input sentence.
|
| 1808 |
+
|
| 1809 |
+
Args:
|
| 1810 |
+
x: input tokens (required).
|
| 1811 |
+
pos: position for each token (optional).
|
| 1812 |
+
Returns:
|
| 1813 |
+
distance: syntactic distance
|
| 1814 |
+
height: syntactic height
|
| 1815 |
+
"""
|
| 1816 |
+
|
| 1817 |
+
mask = x != self.pad
|
| 1818 |
+
mask_shifted = F.pad(mask[:, 1:], (0, 1), value=0)
|
| 1819 |
+
|
| 1820 |
+
if embs is None:
|
| 1821 |
+
h = self.roberta.embeddings(x)
|
| 1822 |
+
else:
|
| 1823 |
+
h = embs
|
| 1824 |
+
|
| 1825 |
+
if n_cntxt_layers > 0:
|
| 1826 |
+
if n_cntxt_layers == 1:
|
| 1827 |
+
parser_layers = self.parser_layers_1
|
| 1828 |
+
height_ff = self.height_ff_1
|
| 1829 |
+
distance_ff = self.distance_ff_1
|
| 1830 |
+
elif n_cntxt_layers == 2:
|
| 1831 |
+
parser_layers = self.parser_layers_2
|
| 1832 |
+
height_ff = self.height_ff_2
|
| 1833 |
+
distance_ff = self.distance_ff_2
|
| 1834 |
+
for i in range(int(self.config.n_parser_layers/2)):
|
| 1835 |
+
h = h.masked_fill(~mask[:, :, None], 0)
|
| 1836 |
+
h = parser_layers[i](h)
|
| 1837 |
+
|
| 1838 |
+
height = height_ff(h).squeeze(-1)
|
| 1839 |
+
height.masked_fill_(~mask, -1e9)
|
| 1840 |
+
|
| 1841 |
+
distance = distance_ff(h).squeeze(-1)
|
| 1842 |
+
distance.masked_fill_(~mask_shifted, 1e9)
|
| 1843 |
+
|
| 1844 |
+
# Calbrating the distance and height to the same level
|
| 1845 |
+
length = distance.size(1)
|
| 1846 |
+
height_max = height[:, None, :].expand(-1, length, -1)
|
| 1847 |
+
height_max = torch.cummax(
|
| 1848 |
+
height_max.triu(0) - torch.ones_like(height_max).tril(-1) * 1e9, dim=-1
|
| 1849 |
+
)[0].triu(0)
|
| 1850 |
+
|
| 1851 |
+
margin_left = torch.relu(
|
| 1852 |
+
F.pad(distance[:, :-1, None], (0, 0, 1, 0), value=1e9) - height_max
|
| 1853 |
+
)
|
| 1854 |
+
margin_right = torch.relu(distance[:, None, :] - height_max)
|
| 1855 |
+
margin = torch.where(
|
| 1856 |
+
margin_left > margin_right, margin_right, margin_left
|
| 1857 |
+
).triu(0)
|
| 1858 |
+
|
| 1859 |
+
margin_mask = torch.stack([mask_shifted] + [mask] * (length - 1), dim=1)
|
| 1860 |
+
margin.masked_fill_(~margin_mask, 0)
|
| 1861 |
+
margin = margin.max()
|
| 1862 |
+
|
| 1863 |
+
distance = distance - margin
|
| 1864 |
+
else:
|
| 1865 |
+
for i in range(self.config.n_parser_layers):
|
| 1866 |
+
h = h.masked_fill(~mask[:, :, None], 0)
|
| 1867 |
+
h = self.parser_layers[i](h)
|
| 1868 |
+
|
| 1869 |
+
height = self.height_ff(h).squeeze(-1)
|
| 1870 |
+
height.masked_fill_(~mask, -1e9)
|
| 1871 |
+
|
| 1872 |
+
distance = self.distance_ff(h).squeeze(-1)
|
| 1873 |
+
distance.masked_fill_(~mask_shifted, 1e9)
|
| 1874 |
+
|
| 1875 |
+
# Calbrating the distance and height to the same level
|
| 1876 |
+
length = distance.size(1)
|
| 1877 |
+
height_max = height[:, None, :].expand(-1, length, -1)
|
| 1878 |
+
height_max = torch.cummax(
|
| 1879 |
+
height_max.triu(0) - torch.ones_like(height_max).tril(-1) * 1e9, dim=-1
|
| 1880 |
+
)[0].triu(0)
|
| 1881 |
+
|
| 1882 |
+
margin_left = torch.relu(
|
| 1883 |
+
F.pad(distance[:, :-1, None], (0, 0, 1, 0), value=1e9) - height_max
|
| 1884 |
+
)
|
| 1885 |
+
margin_right = torch.relu(distance[:, None, :] - height_max)
|
| 1886 |
+
margin = torch.where(
|
| 1887 |
+
margin_left > margin_right, margin_right, margin_left
|
| 1888 |
+
).triu(0)
|
| 1889 |
+
|
| 1890 |
+
margin_mask = torch.stack([mask_shifted] + [mask] * (length - 1), dim=1)
|
| 1891 |
+
margin.masked_fill_(~margin_mask, 0)
|
| 1892 |
+
margin = margin.max()
|
| 1893 |
+
|
| 1894 |
+
distance = distance - margin
|
| 1895 |
+
|
| 1896 |
+
return distance, height
|
| 1897 |
+
|
| 1898 |
+
def generate_mask(self, x, distance, height, n_cntxt_layers=0):
|
| 1899 |
+
"""Compute head and cibling distribution for each token."""
|
| 1900 |
+
|
| 1901 |
+
bsz, length = x.size()
|
| 1902 |
+
|
| 1903 |
+
eye = torch.eye(length, device=x.device, dtype=torch.bool)
|
| 1904 |
+
eye = eye[None, :, :].expand((bsz, -1, -1))
|
| 1905 |
+
|
| 1906 |
+
block_p, block = self.compute_block(distance, height, n_cntxt_layers=n_cntxt_layers)
|
| 1907 |
+
head_p = self.compute_head(height, n_cntxt_layers=n_cntxt_layers)
|
| 1908 |
+
head = torch.einsum("blij,bijh->blh", block_p, head_p)
|
| 1909 |
+
head = head.masked_fill(eye, 0)
|
| 1910 |
+
child = head.transpose(1, 2)
|
| 1911 |
+
cibling = torch.bmm(head, child).masked_fill(eye, 0)
|
| 1912 |
+
|
| 1913 |
+
rel_list = []
|
| 1914 |
+
if "head" in self.config.relations:
|
| 1915 |
+
rel_list.append(head)
|
| 1916 |
+
if "child" in self.config.relations:
|
| 1917 |
+
rel_list.append(child)
|
| 1918 |
+
if "cibling" in self.config.relations:
|
| 1919 |
+
rel_list.append(cibling)
|
| 1920 |
+
|
| 1921 |
+
rel = torch.stack(rel_list, dim=1)
|
| 1922 |
+
|
| 1923 |
+
if n_cntxt_layers > 0:
|
| 1924 |
+
if n_cntxt_layers == 1:
|
| 1925 |
+
rel_weight = self.rel_weight_1
|
| 1926 |
+
elif n_cntxt_layers == 2:
|
| 1927 |
+
rel_weight = self.rel_weight_2
|
| 1928 |
+
else:
|
| 1929 |
+
rel_weight = self.rel_weight
|
| 1930 |
+
|
| 1931 |
+
dep = torch.einsum("lhr,brij->lbhij", rel_weight, rel)
|
| 1932 |
+
|
| 1933 |
+
if n_cntxt_layers == 1:
|
| 1934 |
+
num_layers = self.cntxt_layers_2.config.num_hidden_layers
|
| 1935 |
+
else:
|
| 1936 |
+
num_layers = self.roberta.config.num_hidden_layers
|
| 1937 |
+
|
| 1938 |
+
att_mask = dep.reshape(
|
| 1939 |
+
num_layers,
|
| 1940 |
+
bsz,
|
| 1941 |
+
self.config.num_attention_heads,
|
| 1942 |
+
length,
|
| 1943 |
+
length,
|
| 1944 |
+
)
|
| 1945 |
+
|
| 1946 |
+
return att_mask, cibling, head, block
|
| 1947 |
+
|
| 1948 |
+
def forward(
|
| 1949 |
+
self,
|
| 1950 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 1951 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 1952 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
| 1953 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1954 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 1955 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1956 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1957 |
+
output_attentions: Optional[bool] = None,
|
| 1958 |
+
output_hidden_states: Optional[bool] = None,
|
| 1959 |
+
return_dict: Optional[bool] = None,
|
| 1960 |
+
) -> Union[Tuple, SequenceClassifierOutput]:
|
| 1961 |
+
r"""
|
| 1962 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1963 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
| 1964 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
| 1965 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 1966 |
+
"""
|
| 1967 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1968 |
+
|
| 1969 |
+
if self.config.n_cntxt_layers > 0:
|
| 1970 |
+
cntxt_outputs = self.cntxt_layers(
|
| 1971 |
+
input_ids,
|
| 1972 |
+
attention_mask=attention_mask,
|
| 1973 |
+
token_type_ids=token_type_ids,
|
| 1974 |
+
position_ids=position_ids,
|
| 1975 |
+
head_mask=head_mask,
|
| 1976 |
+
inputs_embeds=inputs_embeds,
|
| 1977 |
+
output_attentions=output_attentions,
|
| 1978 |
+
output_hidden_states=output_hidden_states,
|
| 1979 |
+
return_dict=return_dict)
|
| 1980 |
+
|
| 1981 |
+
|
| 1982 |
+
if self.config.n_cntxt_layers_2 > 0:
|
| 1983 |
+
distance_1, height_1 = self.parse(input_ids, cntxt_outputs[0], n_cntxt_layers=1)
|
| 1984 |
+
att_mask_1, _, _, _ = self.generate_mask(input_ids, distance_1, height_1, n_cntxt_layers=1)
|
| 1985 |
+
|
| 1986 |
+
cntxt_outputs_2 = self.cntxt_layers_2(
|
| 1987 |
+
input_ids,
|
| 1988 |
+
attention_mask=attention_mask,
|
| 1989 |
+
token_type_ids=token_type_ids,
|
| 1990 |
+
position_ids=position_ids,
|
| 1991 |
+
head_mask=head_mask,
|
| 1992 |
+
inputs_embeds=inputs_embeds,
|
| 1993 |
+
output_attentions=output_attentions,
|
| 1994 |
+
output_hidden_states=output_hidden_states,
|
| 1995 |
+
return_dict=return_dict,
|
| 1996 |
+
parser_att_mask=att_mask_1)
|
| 1997 |
+
|
| 1998 |
+
sequence_output = cntxt_outputs_2[0]
|
| 1999 |
+
|
| 2000 |
+
distance_2, height_2 = self.parse(input_ids, sequence_output[0], n_cntxt_layers=2)
|
| 2001 |
+
att_mask, _, _, _ = self.generate_mask(input_ids, distance_2, height_2, n_cntxt_layers=2)
|
| 2002 |
+
|
| 2003 |
+
elif self.config.n_cntxt_layers > 0:
|
| 2004 |
+
distance, height = self.parse(input_ids, cntxt_outputs[0])
|
| 2005 |
+
att_mask, _, _, _ = self.generate_mask(input_ids, distance, height)
|
| 2006 |
+
else:
|
| 2007 |
+
distance, height = self.parse(input_ids)
|
| 2008 |
+
att_mask, _, _, _ = self.generate_mask(input_ids, distance, height)
|
| 2009 |
+
|
| 2010 |
+
outputs = self.roberta(
|
| 2011 |
+
input_ids,
|
| 2012 |
+
attention_mask=attention_mask,
|
| 2013 |
+
token_type_ids=token_type_ids,
|
| 2014 |
+
position_ids=position_ids,
|
| 2015 |
+
head_mask=head_mask,
|
| 2016 |
+
inputs_embeds=inputs_embeds,
|
| 2017 |
+
output_attentions=output_attentions,
|
| 2018 |
+
output_hidden_states=output_hidden_states,
|
| 2019 |
+
return_dict=return_dict,
|
| 2020 |
+
parser_att_mask=att_mask,
|
| 2021 |
+
)
|
| 2022 |
+
sequence_output = outputs[0]
|
| 2023 |
+
logits = self.classifier(sequence_output)
|
| 2024 |
+
|
| 2025 |
+
loss = None
|
| 2026 |
+
if labels is not None:
|
| 2027 |
+
if self.config.problem_type is None:
|
| 2028 |
+
if self.num_labels == 1:
|
| 2029 |
+
self.config.problem_type = "regression"
|
| 2030 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
| 2031 |
+
self.config.problem_type = "single_label_classification"
|
| 2032 |
+
else:
|
| 2033 |
+
self.config.problem_type = "multi_label_classification"
|
| 2034 |
+
|
| 2035 |
+
if self.config.problem_type == "regression":
|
| 2036 |
+
loss_fct = MSELoss()
|
| 2037 |
+
if self.num_labels == 1:
|
| 2038 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
| 2039 |
+
else:
|
| 2040 |
+
loss = loss_fct(logits, labels)
|
| 2041 |
+
elif self.config.problem_type == "single_label_classification":
|
| 2042 |
+
loss_fct = CrossEntropyLoss()
|
| 2043 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
| 2044 |
+
elif self.config.problem_type == "multi_label_classification":
|
| 2045 |
+
loss_fct = BCEWithLogitsLoss()
|
| 2046 |
+
loss = loss_fct(logits, labels)
|
| 2047 |
+
|
| 2048 |
+
if not return_dict:
|
| 2049 |
+
output = (logits,) + outputs[2:]
|
| 2050 |
+
return ((loss,) + output) if loss is not None else output
|
| 2051 |
+
|
| 2052 |
+
return SequenceClassifierOutput(
|
| 2053 |
+
loss=loss,
|
| 2054 |
+
logits=logits,
|
| 2055 |
+
hidden_states=outputs.hidden_states,
|
| 2056 |
+
attentions=outputs.attentions,
|
| 2057 |
+
)
|
| 2058 |
+
|
| 2059 |
+
|
| 2060 |
+
class RobertaClassificationHead(nn.Module):
|
| 2061 |
+
"""Head for sentence-level classification tasks."""
|
| 2062 |
+
|
| 2063 |
+
def __init__(self, config):
|
| 2064 |
+
super().__init__()
|
| 2065 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
| 2066 |
+
classifier_dropout = (
|
| 2067 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
| 2068 |
+
)
|
| 2069 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
| 2070 |
+
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
|
| 2071 |
+
|
| 2072 |
+
def forward(self, features, **kwargs):
|
| 2073 |
+
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
|
| 2074 |
+
x = self.dropout(x)
|
| 2075 |
+
x = self.dense(x)
|
| 2076 |
+
x = torch.tanh(x)
|
| 2077 |
+
x = self.dropout(x)
|
| 2078 |
+
x = self.out_proj(x)
|
| 2079 |
+
return x
|
| 2080 |
+
|
| 2081 |
+
|
| 2082 |
+
def create_position_ids_from_input_ids(
|
| 2083 |
+
input_ids, padding_idx, past_key_values_length=0
|
| 2084 |
+
):
|
| 2085 |
+
"""
|
| 2086 |
+
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
|
| 2087 |
+
are ignored. This is modified from fairseq's `utils.make_positions`.
|
| 2088 |
+
|
| 2089 |
+
Args:
|
| 2090 |
+
x: torch.Tensor x:
|
| 2091 |
+
|
| 2092 |
+
Returns: torch.Tensor
|
| 2093 |
+
"""
|
| 2094 |
+
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
|
| 2095 |
+
mask = input_ids.ne(padding_idx).int()
|
| 2096 |
+
incremental_indices = (
|
| 2097 |
+
torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length
|
| 2098 |
+
) * mask
|
| 2099 |
+
return incremental_indices.long() + padding_idx
|
| 2100 |
+
|
| 2101 |
+
|
| 2102 |
+
def cumprod(x, reverse=False, exclusive=False):
|
| 2103 |
+
"""cumulative product."""
|
| 2104 |
+
if reverse:
|
| 2105 |
+
x = x.flip([-1])
|
| 2106 |
+
|
| 2107 |
+
if exclusive:
|
| 2108 |
+
x = F.pad(x[:, :, :-1], (1, 0), value=1)
|
| 2109 |
+
|
| 2110 |
+
cx = x.cumprod(-1)
|
| 2111 |
+
|
| 2112 |
+
if reverse:
|
| 2113 |
+
cx = cx.flip([-1])
|
| 2114 |
+
return cx
|
| 2115 |
+
|
| 2116 |
+
|
| 2117 |
+
def cumsum(x, reverse=False, exclusive=False):
|
| 2118 |
+
"""cumulative sum."""
|
| 2119 |
+
bsz, _, length = x.size()
|
| 2120 |
+
device = x.device
|
| 2121 |
+
if reverse:
|
| 2122 |
+
if exclusive:
|
| 2123 |
+
w = torch.ones([bsz, length, length], device=device).tril(-1)
|
| 2124 |
+
else:
|
| 2125 |
+
w = torch.ones([bsz, length, length], device=device).tril(0)
|
| 2126 |
+
cx = torch.bmm(x, w)
|
| 2127 |
+
else:
|
| 2128 |
+
if exclusive:
|
| 2129 |
+
w = torch.ones([bsz, length, length], device=device).triu(1)
|
| 2130 |
+
else:
|
| 2131 |
+
w = torch.ones([bsz, length, length], device=device).triu(0)
|
| 2132 |
+
cx = torch.bmm(x, w)
|
| 2133 |
+
return cx
|
| 2134 |
+
|
| 2135 |
+
|
| 2136 |
+
def cummin(x, reverse=False, exclusive=False, max_value=1e9):
|
| 2137 |
+
"""cumulative min."""
|
| 2138 |
+
if reverse:
|
| 2139 |
+
if exclusive:
|
| 2140 |
+
x = F.pad(x[:, :, 1:], (0, 1), value=max_value)
|
| 2141 |
+
x = x.flip([-1]).cummin(-1)[0].flip([-1])
|
| 2142 |
+
else:
|
| 2143 |
+
if exclusive:
|
| 2144 |
+
x = F.pad(x[:, :, :-1], (1, 0), value=max_value)
|
| 2145 |
+
x = x.cummin(-1)[0]
|
| 2146 |
+
return x
|
finetune/cola/predict_results.txt
ADDED
|
@@ -0,0 +1,1020 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
index prediction
|
| 2 |
+
0 1
|
| 3 |
+
1 1
|
| 4 |
+
2 0
|
| 5 |
+
3 1
|
| 6 |
+
4 0
|
| 7 |
+
5 0
|
| 8 |
+
6 0
|
| 9 |
+
7 1
|
| 10 |
+
8 1
|
| 11 |
+
9 1
|
| 12 |
+
10 0
|
| 13 |
+
11 1
|
| 14 |
+
12 1
|
| 15 |
+
13 0
|
| 16 |
+
14 1
|
| 17 |
+
15 1
|
| 18 |
+
16 1
|
| 19 |
+
17 1
|
| 20 |
+
18 1
|
| 21 |
+
19 1
|
| 22 |
+
20 1
|
| 23 |
+
21 1
|
| 24 |
+
22 1
|
| 25 |
+
23 1
|
| 26 |
+
24 1
|
| 27 |
+
25 1
|
| 28 |
+
26 1
|
| 29 |
+
27 1
|
| 30 |
+
28 1
|
| 31 |
+
29 1
|
| 32 |
+
30 1
|
| 33 |
+
31 0
|
| 34 |
+
32 1
|
| 35 |
+
33 1
|
| 36 |
+
34 1
|
| 37 |
+
35 1
|
| 38 |
+
36 1
|
| 39 |
+
37 1
|
| 40 |
+
38 1
|
| 41 |
+
39 0
|
| 42 |
+
40 1
|
| 43 |
+
41 0
|
| 44 |
+
42 1
|
| 45 |
+
43 1
|
| 46 |
+
44 0
|
| 47 |
+
45 0
|
| 48 |
+
46 1
|
| 49 |
+
47 0
|
| 50 |
+
48 1
|
| 51 |
+
49 1
|
| 52 |
+
50 1
|
| 53 |
+
51 1
|
| 54 |
+
52 1
|
| 55 |
+
53 0
|
| 56 |
+
54 1
|
| 57 |
+
55 1
|
| 58 |
+
56 1
|
| 59 |
+
57 0
|
| 60 |
+
58 1
|
| 61 |
+
59 0
|
| 62 |
+
60 0
|
| 63 |
+
61 1
|
| 64 |
+
62 1
|
| 65 |
+
63 1
|
| 66 |
+
64 1
|
| 67 |
+
65 0
|
| 68 |
+
66 1
|
| 69 |
+
67 0
|
| 70 |
+
68 0
|
| 71 |
+
69 1
|
| 72 |
+
70 1
|
| 73 |
+
71 1
|
| 74 |
+
72 1
|
| 75 |
+
73 0
|
| 76 |
+
74 1
|
| 77 |
+
75 0
|
| 78 |
+
76 1
|
| 79 |
+
77 1
|
| 80 |
+
78 1
|
| 81 |
+
79 1
|
| 82 |
+
80 0
|
| 83 |
+
81 1
|
| 84 |
+
82 1
|
| 85 |
+
83 0
|
| 86 |
+
84 1
|
| 87 |
+
85 0
|
| 88 |
+
86 0
|
| 89 |
+
87 1
|
| 90 |
+
88 1
|
| 91 |
+
89 1
|
| 92 |
+
90 1
|
| 93 |
+
91 1
|
| 94 |
+
92 1
|
| 95 |
+
93 1
|
| 96 |
+
94 1
|
| 97 |
+
95 1
|
| 98 |
+
96 0
|
| 99 |
+
97 1
|
| 100 |
+
98 1
|
| 101 |
+
99 1
|
| 102 |
+
100 1
|
| 103 |
+
101 0
|
| 104 |
+
102 1
|
| 105 |
+
103 1
|
| 106 |
+
104 1
|
| 107 |
+
105 0
|
| 108 |
+
106 1
|
| 109 |
+
107 1
|
| 110 |
+
108 0
|
| 111 |
+
109 0
|
| 112 |
+
110 1
|
| 113 |
+
111 0
|
| 114 |
+
112 1
|
| 115 |
+
113 1
|
| 116 |
+
114 0
|
| 117 |
+
115 1
|
| 118 |
+
116 0
|
| 119 |
+
117 1
|
| 120 |
+
118 0
|
| 121 |
+
119 1
|
| 122 |
+
120 1
|
| 123 |
+
121 1
|
| 124 |
+
122 1
|
| 125 |
+
123 1
|
| 126 |
+
124 1
|
| 127 |
+
125 1
|
| 128 |
+
126 1
|
| 129 |
+
127 0
|
| 130 |
+
128 0
|
| 131 |
+
129 1
|
| 132 |
+
130 1
|
| 133 |
+
131 1
|
| 134 |
+
132 1
|
| 135 |
+
133 1
|
| 136 |
+
134 1
|
| 137 |
+
135 1
|
| 138 |
+
136 1
|
| 139 |
+
137 1
|
| 140 |
+
138 1
|
| 141 |
+
139 1
|
| 142 |
+
140 1
|
| 143 |
+
141 1
|
| 144 |
+
142 1
|
| 145 |
+
143 1
|
| 146 |
+
144 1
|
| 147 |
+
145 1
|
| 148 |
+
146 1
|
| 149 |
+
147 1
|
| 150 |
+
148 1
|
| 151 |
+
149 1
|
| 152 |
+
150 0
|
| 153 |
+
151 0
|
| 154 |
+
152 0
|
| 155 |
+
153 1
|
| 156 |
+
154 1
|
| 157 |
+
155 1
|
| 158 |
+
156 1
|
| 159 |
+
157 1
|
| 160 |
+
158 0
|
| 161 |
+
159 0
|
| 162 |
+
160 1
|
| 163 |
+
161 1
|
| 164 |
+
162 1
|
| 165 |
+
163 1
|
| 166 |
+
164 1
|
| 167 |
+
165 1
|
| 168 |
+
166 0
|
| 169 |
+
167 1
|
| 170 |
+
168 0
|
| 171 |
+
169 1
|
| 172 |
+
170 0
|
| 173 |
+
171 0
|
| 174 |
+
172 1
|
| 175 |
+
173 0
|
| 176 |
+
174 0
|
| 177 |
+
175 1
|
| 178 |
+
176 1
|
| 179 |
+
177 1
|
| 180 |
+
178 1
|
| 181 |
+
179 1
|
| 182 |
+
180 0
|
| 183 |
+
181 1
|
| 184 |
+
182 1
|
| 185 |
+
183 1
|
| 186 |
+
184 1
|
| 187 |
+
185 1
|
| 188 |
+
186 1
|
| 189 |
+
187 0
|
| 190 |
+
188 0
|
| 191 |
+
189 1
|
| 192 |
+
190 1
|
| 193 |
+
191 1
|
| 194 |
+
192 0
|
| 195 |
+
193 1
|
| 196 |
+
194 1
|
| 197 |
+
195 1
|
| 198 |
+
196 1
|
| 199 |
+
197 0
|
| 200 |
+
198 1
|
| 201 |
+
199 1
|
| 202 |
+
200 1
|
| 203 |
+
201 1
|
| 204 |
+
202 1
|
| 205 |
+
203 1
|
| 206 |
+
204 1
|
| 207 |
+
205 1
|
| 208 |
+
206 1
|
| 209 |
+
207 1
|
| 210 |
+
208 1
|
| 211 |
+
209 1
|
| 212 |
+
210 1
|
| 213 |
+
211 1
|
| 214 |
+
212 1
|
| 215 |
+
213 0
|
| 216 |
+
214 1
|
| 217 |
+
215 1
|
| 218 |
+
216 0
|
| 219 |
+
217 1
|
| 220 |
+
218 1
|
| 221 |
+
219 1
|
| 222 |
+
220 0
|
| 223 |
+
221 0
|
| 224 |
+
222 1
|
| 225 |
+
223 1
|
| 226 |
+
224 1
|
| 227 |
+
225 0
|
| 228 |
+
226 1
|
| 229 |
+
227 1
|
| 230 |
+
228 1
|
| 231 |
+
229 1
|
| 232 |
+
230 1
|
| 233 |
+
231 1
|
| 234 |
+
232 0
|
| 235 |
+
233 1
|
| 236 |
+
234 1
|
| 237 |
+
235 1
|
| 238 |
+
236 1
|
| 239 |
+
237 1
|
| 240 |
+
238 1
|
| 241 |
+
239 1
|
| 242 |
+
240 0
|
| 243 |
+
241 1
|
| 244 |
+
242 1
|
| 245 |
+
243 0
|
| 246 |
+
244 1
|
| 247 |
+
245 1
|
| 248 |
+
246 1
|
| 249 |
+
247 1
|
| 250 |
+
248 0
|
| 251 |
+
249 1
|
| 252 |
+
250 1
|
| 253 |
+
251 1
|
| 254 |
+
252 1
|
| 255 |
+
253 1
|
| 256 |
+
254 0
|
| 257 |
+
255 0
|
| 258 |
+
256 1
|
| 259 |
+
257 0
|
| 260 |
+
258 1
|
| 261 |
+
259 1
|
| 262 |
+
260 1
|
| 263 |
+
261 1
|
| 264 |
+
262 0
|
| 265 |
+
263 0
|
| 266 |
+
264 0
|
| 267 |
+
265 0
|
| 268 |
+
266 0
|
| 269 |
+
267 1
|
| 270 |
+
268 0
|
| 271 |
+
269 0
|
| 272 |
+
270 1
|
| 273 |
+
271 1
|
| 274 |
+
272 1
|
| 275 |
+
273 1
|
| 276 |
+
274 1
|
| 277 |
+
275 1
|
| 278 |
+
276 0
|
| 279 |
+
277 1
|
| 280 |
+
278 1
|
| 281 |
+
279 0
|
| 282 |
+
280 1
|
| 283 |
+
281 1
|
| 284 |
+
282 1
|
| 285 |
+
283 0
|
| 286 |
+
284 1
|
| 287 |
+
285 1
|
| 288 |
+
286 0
|
| 289 |
+
287 1
|
| 290 |
+
288 1
|
| 291 |
+
289 1
|
| 292 |
+
290 1
|
| 293 |
+
291 1
|
| 294 |
+
292 1
|
| 295 |
+
293 0
|
| 296 |
+
294 1
|
| 297 |
+
295 1
|
| 298 |
+
296 0
|
| 299 |
+
297 1
|
| 300 |
+
298 1
|
| 301 |
+
299 1
|
| 302 |
+
300 0
|
| 303 |
+
301 1
|
| 304 |
+
302 1
|
| 305 |
+
303 1
|
| 306 |
+
304 0
|
| 307 |
+
305 1
|
| 308 |
+
306 1
|
| 309 |
+
307 1
|
| 310 |
+
308 1
|
| 311 |
+
309 1
|
| 312 |
+
310 1
|
| 313 |
+
311 1
|
| 314 |
+
312 1
|
| 315 |
+
313 1
|
| 316 |
+
314 1
|
| 317 |
+
315 1
|
| 318 |
+
316 1
|
| 319 |
+
317 1
|
| 320 |
+
318 1
|
| 321 |
+
319 1
|
| 322 |
+
320 0
|
| 323 |
+
321 1
|
| 324 |
+
322 0
|
| 325 |
+
323 0
|
| 326 |
+
324 0
|
| 327 |
+
325 1
|
| 328 |
+
326 1
|
| 329 |
+
327 1
|
| 330 |
+
328 0
|
| 331 |
+
329 1
|
| 332 |
+
330 1
|
| 333 |
+
331 1
|
| 334 |
+
332 1
|
| 335 |
+
333 1
|
| 336 |
+
334 1
|
| 337 |
+
335 1
|
| 338 |
+
336 1
|
| 339 |
+
337 1
|
| 340 |
+
338 0
|
| 341 |
+
339 0
|
| 342 |
+
340 1
|
| 343 |
+
341 1
|
| 344 |
+
342 1
|
| 345 |
+
343 1
|
| 346 |
+
344 1
|
| 347 |
+
345 0
|
| 348 |
+
346 1
|
| 349 |
+
347 1
|
| 350 |
+
348 1
|
| 351 |
+
349 1
|
| 352 |
+
350 1
|
| 353 |
+
351 1
|
| 354 |
+
352 1
|
| 355 |
+
353 1
|
| 356 |
+
354 1
|
| 357 |
+
355 1
|
| 358 |
+
356 0
|
| 359 |
+
357 1
|
| 360 |
+
358 1
|
| 361 |
+
359 1
|
| 362 |
+
360 1
|
| 363 |
+
361 1
|
| 364 |
+
362 1
|
| 365 |
+
363 1
|
| 366 |
+
364 1
|
| 367 |
+
365 0
|
| 368 |
+
366 1
|
| 369 |
+
367 1
|
| 370 |
+
368 1
|
| 371 |
+
369 1
|
| 372 |
+
370 1
|
| 373 |
+
371 1
|
| 374 |
+
372 1
|
| 375 |
+
373 1
|
| 376 |
+
374 1
|
| 377 |
+
375 1
|
| 378 |
+
376 1
|
| 379 |
+
377 1
|
| 380 |
+
378 0
|
| 381 |
+
379 1
|
| 382 |
+
380 1
|
| 383 |
+
381 1
|
| 384 |
+
382 1
|
| 385 |
+
383 0
|
| 386 |
+
384 1
|
| 387 |
+
385 1
|
| 388 |
+
386 1
|
| 389 |
+
387 1
|
| 390 |
+
388 1
|
| 391 |
+
389 1
|
| 392 |
+
390 1
|
| 393 |
+
391 1
|
| 394 |
+
392 0
|
| 395 |
+
393 1
|
| 396 |
+
394 1
|
| 397 |
+
395 1
|
| 398 |
+
396 1
|
| 399 |
+
397 0
|
| 400 |
+
398 1
|
| 401 |
+
399 1
|
| 402 |
+
400 1
|
| 403 |
+
401 1
|
| 404 |
+
402 0
|
| 405 |
+
403 1
|
| 406 |
+
404 1
|
| 407 |
+
405 1
|
| 408 |
+
406 1
|
| 409 |
+
407 1
|
| 410 |
+
408 1
|
| 411 |
+
409 0
|
| 412 |
+
410 1
|
| 413 |
+
411 1
|
| 414 |
+
412 1
|
| 415 |
+
413 1
|
| 416 |
+
414 1
|
| 417 |
+
415 1
|
| 418 |
+
416 1
|
| 419 |
+
417 1
|
| 420 |
+
418 1
|
| 421 |
+
419 1
|
| 422 |
+
420 1
|
| 423 |
+
421 1
|
| 424 |
+
422 1
|
| 425 |
+
423 1
|
| 426 |
+
424 0
|
| 427 |
+
425 1
|
| 428 |
+
426 0
|
| 429 |
+
427 1
|
| 430 |
+
428 0
|
| 431 |
+
429 1
|
| 432 |
+
430 0
|
| 433 |
+
431 0
|
| 434 |
+
432 1
|
| 435 |
+
433 1
|
| 436 |
+
434 1
|
| 437 |
+
435 1
|
| 438 |
+
436 1
|
| 439 |
+
437 1
|
| 440 |
+
438 0
|
| 441 |
+
439 1
|
| 442 |
+
440 1
|
| 443 |
+
441 1
|
| 444 |
+
442 1
|
| 445 |
+
443 1
|
| 446 |
+
444 1
|
| 447 |
+
445 0
|
| 448 |
+
446 1
|
| 449 |
+
447 0
|
| 450 |
+
448 0
|
| 451 |
+
449 1
|
| 452 |
+
450 0
|
| 453 |
+
451 0
|
| 454 |
+
452 0
|
| 455 |
+
453 0
|
| 456 |
+
454 1
|
| 457 |
+
455 1
|
| 458 |
+
456 1
|
| 459 |
+
457 1
|
| 460 |
+
458 1
|
| 461 |
+
459 0
|
| 462 |
+
460 1
|
| 463 |
+
461 1
|
| 464 |
+
462 0
|
| 465 |
+
463 1
|
| 466 |
+
464 1
|
| 467 |
+
465 0
|
| 468 |
+
466 1
|
| 469 |
+
467 0
|
| 470 |
+
468 1
|
| 471 |
+
469 1
|
| 472 |
+
470 1
|
| 473 |
+
471 1
|
| 474 |
+
472 0
|
| 475 |
+
473 1
|
| 476 |
+
474 0
|
| 477 |
+
475 1
|
| 478 |
+
476 1
|
| 479 |
+
477 1
|
| 480 |
+
478 0
|
| 481 |
+
479 1
|
| 482 |
+
480 0
|
| 483 |
+
481 0
|
| 484 |
+
482 1
|
| 485 |
+
483 0
|
| 486 |
+
484 0
|
| 487 |
+
485 1
|
| 488 |
+
486 0
|
| 489 |
+
487 1
|
| 490 |
+
488 0
|
| 491 |
+
489 1
|
| 492 |
+
490 1
|
| 493 |
+
491 0
|
| 494 |
+
492 1
|
| 495 |
+
493 0
|
| 496 |
+
494 0
|
| 497 |
+
495 0
|
| 498 |
+
496 0
|
| 499 |
+
497 0
|
| 500 |
+
498 1
|
| 501 |
+
499 1
|
| 502 |
+
500 1
|
| 503 |
+
501 1
|
| 504 |
+
502 1
|
| 505 |
+
503 1
|
| 506 |
+
504 0
|
| 507 |
+
505 0
|
| 508 |
+
506 0
|
| 509 |
+
507 0
|
| 510 |
+
508 0
|
| 511 |
+
509 1
|
| 512 |
+
510 1
|
| 513 |
+
511 1
|
| 514 |
+
512 1
|
| 515 |
+
513 0
|
| 516 |
+
514 1
|
| 517 |
+
515 1
|
| 518 |
+
516 0
|
| 519 |
+
517 0
|
| 520 |
+
518 1
|
| 521 |
+
519 1
|
| 522 |
+
520 1
|
| 523 |
+
521 1
|
| 524 |
+
522 1
|
| 525 |
+
523 1
|
| 526 |
+
524 1
|
| 527 |
+
525 1
|
| 528 |
+
526 0
|
| 529 |
+
527 0
|
| 530 |
+
528 0
|
| 531 |
+
529 0
|
| 532 |
+
530 0
|
| 533 |
+
531 0
|
| 534 |
+
532 1
|
| 535 |
+
533 0
|
| 536 |
+
534 1
|
| 537 |
+
535 1
|
| 538 |
+
536 0
|
| 539 |
+
537 0
|
| 540 |
+
538 0
|
| 541 |
+
539 1
|
| 542 |
+
540 0
|
| 543 |
+
541 1
|
| 544 |
+
542 1
|
| 545 |
+
543 1
|
| 546 |
+
544 1
|
| 547 |
+
545 0
|
| 548 |
+
546 1
|
| 549 |
+
547 1
|
| 550 |
+
548 1
|
| 551 |
+
549 1
|
| 552 |
+
550 1
|
| 553 |
+
551 0
|
| 554 |
+
552 1
|
| 555 |
+
553 1
|
| 556 |
+
554 1
|
| 557 |
+
555 1
|
| 558 |
+
556 1
|
| 559 |
+
557 1
|
| 560 |
+
558 1
|
| 561 |
+
559 1
|
| 562 |
+
560 1
|
| 563 |
+
561 1
|
| 564 |
+
562 1
|
| 565 |
+
563 1
|
| 566 |
+
564 0
|
| 567 |
+
565 1
|
| 568 |
+
566 1
|
| 569 |
+
567 1
|
| 570 |
+
568 1
|
| 571 |
+
569 1
|
| 572 |
+
570 1
|
| 573 |
+
571 1
|
| 574 |
+
572 1
|
| 575 |
+
573 1
|
| 576 |
+
574 1
|
| 577 |
+
575 1
|
| 578 |
+
576 1
|
| 579 |
+
577 1
|
| 580 |
+
578 1
|
| 581 |
+
579 1
|
| 582 |
+
580 1
|
| 583 |
+
581 1
|
| 584 |
+
582 1
|
| 585 |
+
583 1
|
| 586 |
+
584 1
|
| 587 |
+
585 1
|
| 588 |
+
586 1
|
| 589 |
+
587 1
|
| 590 |
+
588 1
|
| 591 |
+
589 1
|
| 592 |
+
590 1
|
| 593 |
+
591 1
|
| 594 |
+
592 1
|
| 595 |
+
593 1
|
| 596 |
+
594 1
|
| 597 |
+
595 1
|
| 598 |
+
596 1
|
| 599 |
+
597 1
|
| 600 |
+
598 1
|
| 601 |
+
599 1
|
| 602 |
+
600 0
|
| 603 |
+
601 1
|
| 604 |
+
602 1
|
| 605 |
+
603 1
|
| 606 |
+
604 1
|
| 607 |
+
605 1
|
| 608 |
+
606 1
|
| 609 |
+
607 1
|
| 610 |
+
608 1
|
| 611 |
+
609 1
|
| 612 |
+
610 1
|
| 613 |
+
611 1
|
| 614 |
+
612 1
|
| 615 |
+
613 1
|
| 616 |
+
614 1
|
| 617 |
+
615 1
|
| 618 |
+
616 0
|
| 619 |
+
617 1
|
| 620 |
+
618 1
|
| 621 |
+
619 1
|
| 622 |
+
620 1
|
| 623 |
+
621 0
|
| 624 |
+
622 1
|
| 625 |
+
623 0
|
| 626 |
+
624 1
|
| 627 |
+
625 1
|
| 628 |
+
626 1
|
| 629 |
+
627 0
|
| 630 |
+
628 1
|
| 631 |
+
629 1
|
| 632 |
+
630 1
|
| 633 |
+
631 1
|
| 634 |
+
632 1
|
| 635 |
+
633 1
|
| 636 |
+
634 1
|
| 637 |
+
635 1
|
| 638 |
+
636 1
|
| 639 |
+
637 1
|
| 640 |
+
638 0
|
| 641 |
+
639 1
|
| 642 |
+
640 1
|
| 643 |
+
641 1
|
| 644 |
+
642 0
|
| 645 |
+
643 1
|
| 646 |
+
644 1
|
| 647 |
+
645 1
|
| 648 |
+
646 0
|
| 649 |
+
647 1
|
| 650 |
+
648 0
|
| 651 |
+
649 0
|
| 652 |
+
650 0
|
| 653 |
+
651 0
|
| 654 |
+
652 0
|
| 655 |
+
653 1
|
| 656 |
+
654 0
|
| 657 |
+
655 0
|
| 658 |
+
656 1
|
| 659 |
+
657 0
|
| 660 |
+
658 1
|
| 661 |
+
659 1
|
| 662 |
+
660 1
|
| 663 |
+
661 1
|
| 664 |
+
662 1
|
| 665 |
+
663 0
|
| 666 |
+
664 1
|
| 667 |
+
665 0
|
| 668 |
+
666 1
|
| 669 |
+
667 1
|
| 670 |
+
668 1
|
| 671 |
+
669 1
|
| 672 |
+
670 1
|
| 673 |
+
671 0
|
| 674 |
+
672 1
|
| 675 |
+
673 0
|
| 676 |
+
674 1
|
| 677 |
+
675 1
|
| 678 |
+
676 1
|
| 679 |
+
677 1
|
| 680 |
+
678 0
|
| 681 |
+
679 0
|
| 682 |
+
680 1
|
| 683 |
+
681 1
|
| 684 |
+
682 0
|
| 685 |
+
683 1
|
| 686 |
+
684 1
|
| 687 |
+
685 1
|
| 688 |
+
686 1
|
| 689 |
+
687 1
|
| 690 |
+
688 1
|
| 691 |
+
689 1
|
| 692 |
+
690 1
|
| 693 |
+
691 1
|
| 694 |
+
692 0
|
| 695 |
+
693 1
|
| 696 |
+
694 1
|
| 697 |
+
695 0
|
| 698 |
+
696 0
|
| 699 |
+
697 0
|
| 700 |
+
698 0
|
| 701 |
+
699 1
|
| 702 |
+
700 1
|
| 703 |
+
701 0
|
| 704 |
+
702 0
|
| 705 |
+
703 0
|
| 706 |
+
704 0
|
| 707 |
+
705 1
|
| 708 |
+
706 0
|
| 709 |
+
707 0
|
| 710 |
+
708 0
|
| 711 |
+
709 0
|
| 712 |
+
710 1
|
| 713 |
+
711 1
|
| 714 |
+
712 1
|
| 715 |
+
713 1
|
| 716 |
+
714 0
|
| 717 |
+
715 0
|
| 718 |
+
716 1
|
| 719 |
+
717 1
|
| 720 |
+
718 0
|
| 721 |
+
719 1
|
| 722 |
+
720 0
|
| 723 |
+
721 1
|
| 724 |
+
722 1
|
| 725 |
+
723 0
|
| 726 |
+
724 0
|
| 727 |
+
725 0
|
| 728 |
+
726 1
|
| 729 |
+
727 1
|
| 730 |
+
728 1
|
| 731 |
+
729 0
|
| 732 |
+
730 1
|
| 733 |
+
731 1
|
| 734 |
+
732 1
|
| 735 |
+
733 1
|
| 736 |
+
734 1
|
| 737 |
+
735 0
|
| 738 |
+
736 1
|
| 739 |
+
737 0
|
| 740 |
+
738 1
|
| 741 |
+
739 0
|
| 742 |
+
740 1
|
| 743 |
+
741 0
|
| 744 |
+
742 1
|
| 745 |
+
743 1
|
| 746 |
+
744 1
|
| 747 |
+
745 1
|
| 748 |
+
746 1
|
| 749 |
+
747 1
|
| 750 |
+
748 1
|
| 751 |
+
749 1
|
| 752 |
+
750 1
|
| 753 |
+
751 1
|
| 754 |
+
752 1
|
| 755 |
+
753 1
|
| 756 |
+
754 1
|
| 757 |
+
755 1
|
| 758 |
+
756 0
|
| 759 |
+
757 1
|
| 760 |
+
758 1
|
| 761 |
+
759 0
|
| 762 |
+
760 1
|
| 763 |
+
761 0
|
| 764 |
+
762 1
|
| 765 |
+
763 0
|
| 766 |
+
764 1
|
| 767 |
+
765 0
|
| 768 |
+
766 0
|
| 769 |
+
767 1
|
| 770 |
+
768 1
|
| 771 |
+
769 1
|
| 772 |
+
770 1
|
| 773 |
+
771 1
|
| 774 |
+
772 1
|
| 775 |
+
773 1
|
| 776 |
+
774 1
|
| 777 |
+
775 1
|
| 778 |
+
776 1
|
| 779 |
+
777 1
|
| 780 |
+
778 1
|
| 781 |
+
779 1
|
| 782 |
+
780 1
|
| 783 |
+
781 1
|
| 784 |
+
782 1
|
| 785 |
+
783 1
|
| 786 |
+
784 1
|
| 787 |
+
785 1
|
| 788 |
+
786 0
|
| 789 |
+
787 0
|
| 790 |
+
788 1
|
| 791 |
+
789 1
|
| 792 |
+
790 1
|
| 793 |
+
791 1
|
| 794 |
+
792 1
|
| 795 |
+
793 1
|
| 796 |
+
794 0
|
| 797 |
+
795 0
|
| 798 |
+
796 0
|
| 799 |
+
797 1
|
| 800 |
+
798 1
|
| 801 |
+
799 1
|
| 802 |
+
800 1
|
| 803 |
+
801 1
|
| 804 |
+
802 1
|
| 805 |
+
803 1
|
| 806 |
+
804 1
|
| 807 |
+
805 1
|
| 808 |
+
806 1
|
| 809 |
+
807 1
|
| 810 |
+
808 1
|
| 811 |
+
809 1
|
| 812 |
+
810 1
|
| 813 |
+
811 1
|
| 814 |
+
812 1
|
| 815 |
+
813 0
|
| 816 |
+
814 0
|
| 817 |
+
815 0
|
| 818 |
+
816 1
|
| 819 |
+
817 0
|
| 820 |
+
818 0
|
| 821 |
+
819 1
|
| 822 |
+
820 1
|
| 823 |
+
821 1
|
| 824 |
+
822 1
|
| 825 |
+
823 1
|
| 826 |
+
824 1
|
| 827 |
+
825 1
|
| 828 |
+
826 1
|
| 829 |
+
827 1
|
| 830 |
+
828 0
|
| 831 |
+
829 1
|
| 832 |
+
830 1
|
| 833 |
+
831 1
|
| 834 |
+
832 1
|
| 835 |
+
833 1
|
| 836 |
+
834 0
|
| 837 |
+
835 1
|
| 838 |
+
836 1
|
| 839 |
+
837 1
|
| 840 |
+
838 1
|
| 841 |
+
839 1
|
| 842 |
+
840 1
|
| 843 |
+
841 1
|
| 844 |
+
842 1
|
| 845 |
+
843 1
|
| 846 |
+
844 1
|
| 847 |
+
845 0
|
| 848 |
+
846 1
|
| 849 |
+
847 1
|
| 850 |
+
848 1
|
| 851 |
+
849 1
|
| 852 |
+
850 1
|
| 853 |
+
851 1
|
| 854 |
+
852 1
|
| 855 |
+
853 1
|
| 856 |
+
854 1
|
| 857 |
+
855 1
|
| 858 |
+
856 1
|
| 859 |
+
857 1
|
| 860 |
+
858 1
|
| 861 |
+
859 1
|
| 862 |
+
860 1
|
| 863 |
+
861 1
|
| 864 |
+
862 1
|
| 865 |
+
863 1
|
| 866 |
+
864 0
|
| 867 |
+
865 1
|
| 868 |
+
866 1
|
| 869 |
+
867 0
|
| 870 |
+
868 1
|
| 871 |
+
869 1
|
| 872 |
+
870 1
|
| 873 |
+
871 1
|
| 874 |
+
872 1
|
| 875 |
+
873 1
|
| 876 |
+
874 1
|
| 877 |
+
875 1
|
| 878 |
+
876 1
|
| 879 |
+
877 1
|
| 880 |
+
878 0
|
| 881 |
+
879 1
|
| 882 |
+
880 0
|
| 883 |
+
881 1
|
| 884 |
+
882 1
|
| 885 |
+
883 1
|
| 886 |
+
884 1
|
| 887 |
+
885 1
|
| 888 |
+
886 1
|
| 889 |
+
887 1
|
| 890 |
+
888 1
|
| 891 |
+
889 1
|
| 892 |
+
890 1
|
| 893 |
+
891 1
|
| 894 |
+
892 1
|
| 895 |
+
893 1
|
| 896 |
+
894 1
|
| 897 |
+
895 1
|
| 898 |
+
896 1
|
| 899 |
+
897 1
|
| 900 |
+
898 0
|
| 901 |
+
899 1
|
| 902 |
+
900 1
|
| 903 |
+
901 1
|
| 904 |
+
902 1
|
| 905 |
+
903 1
|
| 906 |
+
904 1
|
| 907 |
+
905 1
|
| 908 |
+
906 1
|
| 909 |
+
907 1
|
| 910 |
+
908 1
|
| 911 |
+
909 1
|
| 912 |
+
910 1
|
| 913 |
+
911 1
|
| 914 |
+
912 1
|
| 915 |
+
913 1
|
| 916 |
+
914 0
|
| 917 |
+
915 0
|
| 918 |
+
916 1
|
| 919 |
+
917 1
|
| 920 |
+
918 1
|
| 921 |
+
919 1
|
| 922 |
+
920 1
|
| 923 |
+
921 1
|
| 924 |
+
922 1
|
| 925 |
+
923 1
|
| 926 |
+
924 1
|
| 927 |
+
925 1
|
| 928 |
+
926 1
|
| 929 |
+
927 1
|
| 930 |
+
928 1
|
| 931 |
+
929 1
|
| 932 |
+
930 1
|
| 933 |
+
931 1
|
| 934 |
+
932 1
|
| 935 |
+
933 1
|
| 936 |
+
934 1
|
| 937 |
+
935 1
|
| 938 |
+
936 1
|
| 939 |
+
937 1
|
| 940 |
+
938 1
|
| 941 |
+
939 1
|
| 942 |
+
940 1
|
| 943 |
+
941 1
|
| 944 |
+
942 1
|
| 945 |
+
943 0
|
| 946 |
+
944 1
|
| 947 |
+
945 1
|
| 948 |
+
946 1
|
| 949 |
+
947 1
|
| 950 |
+
948 1
|
| 951 |
+
949 0
|
| 952 |
+
950 0
|
| 953 |
+
951 1
|
| 954 |
+
952 1
|
| 955 |
+
953 1
|
| 956 |
+
954 1
|
| 957 |
+
955 1
|
| 958 |
+
956 1
|
| 959 |
+
957 1
|
| 960 |
+
958 1
|
| 961 |
+
959 1
|
| 962 |
+
960 0
|
| 963 |
+
961 0
|
| 964 |
+
962 1
|
| 965 |
+
963 1
|
| 966 |
+
964 1
|
| 967 |
+
965 1
|
| 968 |
+
966 1
|
| 969 |
+
967 1
|
| 970 |
+
968 1
|
| 971 |
+
969 1
|
| 972 |
+
970 1
|
| 973 |
+
971 0
|
| 974 |
+
972 1
|
| 975 |
+
973 1
|
| 976 |
+
974 1
|
| 977 |
+
975 1
|
| 978 |
+
976 1
|
| 979 |
+
977 1
|
| 980 |
+
978 0
|
| 981 |
+
979 1
|
| 982 |
+
980 1
|
| 983 |
+
981 1
|
| 984 |
+
982 1
|
| 985 |
+
983 1
|
| 986 |
+
984 1
|
| 987 |
+
985 1
|
| 988 |
+
986 1
|
| 989 |
+
987 1
|
| 990 |
+
988 1
|
| 991 |
+
989 1
|
| 992 |
+
990 1
|
| 993 |
+
991 1
|
| 994 |
+
992 0
|
| 995 |
+
993 1
|
| 996 |
+
994 1
|
| 997 |
+
995 0
|
| 998 |
+
996 1
|
| 999 |
+
997 1
|
| 1000 |
+
998 1
|
| 1001 |
+
999 1
|
| 1002 |
+
1000 1
|
| 1003 |
+
1001 1
|
| 1004 |
+
1002 1
|
| 1005 |
+
1003 0
|
| 1006 |
+
1004 1
|
| 1007 |
+
1005 0
|
| 1008 |
+
1006 1
|
| 1009 |
+
1007 1
|
| 1010 |
+
1008 0
|
| 1011 |
+
1009 0
|
| 1012 |
+
1010 1
|
| 1013 |
+
1011 1
|
| 1014 |
+
1012 1
|
| 1015 |
+
1013 1
|
| 1016 |
+
1014 1
|
| 1017 |
+
1015 1
|
| 1018 |
+
1016 1
|
| 1019 |
+
1017 1
|
| 1020 |
+
1018 1
|
finetune/cola/pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ec45d466ef3ab84ba3054a1d8517f7eb5329b61b2723f30fa84011c74b37b089
|
| 3 |
+
size 577069633
|
finetune/cola/special_tokens_map.json
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": "<s>",
|
| 3 |
+
"cls_token": "<s>",
|
| 4 |
+
"eos_token": "</s>",
|
| 5 |
+
"mask_token": {
|
| 6 |
+
"content": "<mask>",
|
| 7 |
+
"lstrip": true,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false
|
| 11 |
+
},
|
| 12 |
+
"pad_token": "<pad>",
|
| 13 |
+
"sep_token": "</s>",
|
| 14 |
+
"unk_token": "<unk>"
|
| 15 |
+
}
|
finetune/cola/tokenizer_config.json
ADDED
|
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_prefix_space": false,
|
| 3 |
+
"bos_token": {
|
| 4 |
+
"__type": "AddedToken",
|
| 5 |
+
"content": "<s>",
|
| 6 |
+
"lstrip": false,
|
| 7 |
+
"normalized": true,
|
| 8 |
+
"rstrip": false,
|
| 9 |
+
"single_word": false
|
| 10 |
+
},
|
| 11 |
+
"cls_token": {
|
| 12 |
+
"__type": "AddedToken",
|
| 13 |
+
"content": "<s>",
|
| 14 |
+
"lstrip": false,
|
| 15 |
+
"normalized": true,
|
| 16 |
+
"rstrip": false,
|
| 17 |
+
"single_word": false
|
| 18 |
+
},
|
| 19 |
+
"eos_token": {
|
| 20 |
+
"__type": "AddedToken",
|
| 21 |
+
"content": "</s>",
|
| 22 |
+
"lstrip": false,
|
| 23 |
+
"normalized": true,
|
| 24 |
+
"rstrip": false,
|
| 25 |
+
"single_word": false
|
| 26 |
+
},
|
| 27 |
+
"errors": "replace",
|
| 28 |
+
"mask_token": {
|
| 29 |
+
"__type": "AddedToken",
|
| 30 |
+
"content": "<mask>",
|
| 31 |
+
"lstrip": true,
|
| 32 |
+
"normalized": false,
|
| 33 |
+
"rstrip": false,
|
| 34 |
+
"single_word": false
|
| 35 |
+
},
|
| 36 |
+
"model_max_length": 512,
|
| 37 |
+
"name_or_path": "final_models/structroberta_sx2_final",
|
| 38 |
+
"pad_token": {
|
| 39 |
+
"__type": "AddedToken",
|
| 40 |
+
"content": "<pad>",
|
| 41 |
+
"lstrip": false,
|
| 42 |
+
"normalized": true,
|
| 43 |
+
"rstrip": false,
|
| 44 |
+
"single_word": false
|
| 45 |
+
},
|
| 46 |
+
"sep_token": {
|
| 47 |
+
"__type": "AddedToken",
|
| 48 |
+
"content": "</s>",
|
| 49 |
+
"lstrip": false,
|
| 50 |
+
"normalized": true,
|
| 51 |
+
"rstrip": false,
|
| 52 |
+
"single_word": false
|
| 53 |
+
},
|
| 54 |
+
"special_tokens_map_file": null,
|
| 55 |
+
"tokenizer_class": "RobertaTokenizer",
|
| 56 |
+
"trim_offsets": true,
|
| 57 |
+
"unk_token": {
|
| 58 |
+
"__type": "AddedToken",
|
| 59 |
+
"content": "<unk>",
|
| 60 |
+
"lstrip": false,
|
| 61 |
+
"normalized": true,
|
| 62 |
+
"rstrip": false,
|
| 63 |
+
"single_word": false
|
| 64 |
+
}
|
| 65 |
+
}
|
finetune/cola/train_results.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"epoch": 10.0,
|
| 3 |
+
"train_loss": 0.3363707777382671,
|
| 4 |
+
"train_runtime": 371.6095,
|
| 5 |
+
"train_samples": 8164,
|
| 6 |
+
"train_samples_per_second": 219.693,
|
| 7 |
+
"train_steps_per_second": 1.857
|
| 8 |
+
}
|
finetune/cola/trainer_state.json
ADDED
|
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_metric": 0.7994634473507714,
|
| 3 |
+
"best_model_checkpoint": "final_models/structroberta_sx2_final/finetune/cola/checkpoint-400",
|
| 4 |
+
"epoch": 10.0,
|
| 5 |
+
"global_step": 690,
|
| 6 |
+
"is_hyper_param_search": false,
|
| 7 |
+
"is_local_process_zero": true,
|
| 8 |
+
"is_world_process_zero": true,
|
| 9 |
+
"log_history": [
|
| 10 |
+
{
|
| 11 |
+
"epoch": 5.8,
|
| 12 |
+
"eval_accuracy": 0.7065750956535339,
|
| 13 |
+
"eval_f1": 0.7994634473507714,
|
| 14 |
+
"eval_loss": 0.7585899829864502,
|
| 15 |
+
"eval_mcc": 0.262551358979245,
|
| 16 |
+
"eval_runtime": 2.1393,
|
| 17 |
+
"eval_samples_per_second": 476.322,
|
| 18 |
+
"eval_steps_per_second": 59.832,
|
| 19 |
+
"step": 400
|
| 20 |
+
},
|
| 21 |
+
{
|
| 22 |
+
"epoch": 7.25,
|
| 23 |
+
"learning_rate": 1.3768115942028985e-05,
|
| 24 |
+
"loss": 0.4074,
|
| 25 |
+
"step": 500
|
| 26 |
+
},
|
| 27 |
+
{
|
| 28 |
+
"epoch": 10.0,
|
| 29 |
+
"step": 690,
|
| 30 |
+
"total_flos": 7478546317332480.0,
|
| 31 |
+
"train_loss": 0.3363707777382671,
|
| 32 |
+
"train_runtime": 371.6095,
|
| 33 |
+
"train_samples_per_second": 219.693,
|
| 34 |
+
"train_steps_per_second": 1.857
|
| 35 |
+
}
|
| 36 |
+
],
|
| 37 |
+
"max_steps": 690,
|
| 38 |
+
"num_train_epochs": 10,
|
| 39 |
+
"total_flos": 7478546317332480.0,
|
| 40 |
+
"trial_name": null,
|
| 41 |
+
"trial_params": null
|
| 42 |
+
}
|
finetune/cola/training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:535606b0b8045695abdbfa17932190b45a57263b731642e3613fb33c791f7fa5
|
| 3 |
+
size 3503
|
finetune/cola/vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
finetune/control_raising_control/all_results.json
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"epoch": 10.0,
|
| 3 |
+
"eval_accuracy": 0.8752802014350891,
|
| 4 |
+
"eval_f1": 0.8866091446429785,
|
| 5 |
+
"eval_loss": 0.801540732383728,
|
| 6 |
+
"eval_mcc": 0.7701394030930233,
|
| 7 |
+
"eval_runtime": 28.0068,
|
| 8 |
+
"eval_samples": 13382,
|
| 9 |
+
"eval_samples_per_second": 477.812,
|
| 10 |
+
"eval_steps_per_second": 59.735,
|
| 11 |
+
"train_loss": 0.058391484198245136,
|
| 12 |
+
"train_runtime": 328.0846,
|
| 13 |
+
"train_samples": 6570,
|
| 14 |
+
"train_samples_per_second": 200.253,
|
| 15 |
+
"train_steps_per_second": 1.676
|
| 16 |
+
}
|
finetune/control_raising_control/checkpoint-400/config.json
ADDED
|
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "final_models/structroberta_sx2_final",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"StructRobertaForSequenceClassification"
|
| 5 |
+
],
|
| 6 |
+
"attention_probs_dropout_prob": 0.1,
|
| 7 |
+
"auto_map": {
|
| 8 |
+
"AutoConfig": "modeling_structroberta.StructRobertaConfig",
|
| 9 |
+
"AutoModelForMaskedLM": "modeling_structroberta.StructRoberta",
|
| 10 |
+
"AutoModelForSequenceClassification": "modeling_structroberta.StructRobertaForSequenceClassification"
|
| 11 |
+
},
|
| 12 |
+
"bos_token_id": 0,
|
| 13 |
+
"classifier_dropout": null,
|
| 14 |
+
"conv_size": 9,
|
| 15 |
+
"eos_token_id": 2,
|
| 16 |
+
"hidden_act": "gelu",
|
| 17 |
+
"hidden_dropout_prob": 0.1,
|
| 18 |
+
"hidden_size": 768,
|
| 19 |
+
"id2label": {
|
| 20 |
+
"0": 0,
|
| 21 |
+
"1": 1
|
| 22 |
+
},
|
| 23 |
+
"initializer_range": 0.02,
|
| 24 |
+
"intermediate_size": 3072,
|
| 25 |
+
"label2id": {
|
| 26 |
+
"0": 0,
|
| 27 |
+
"1": 1
|
| 28 |
+
},
|
| 29 |
+
"layer_norm_eps": 1e-05,
|
| 30 |
+
"max_position_embeddings": 514,
|
| 31 |
+
"model_type": "roberta",
|
| 32 |
+
"n_cntxt_layers": 4,
|
| 33 |
+
"n_cntxt_layers_2": 0,
|
| 34 |
+
"n_parser_layers": 6,
|
| 35 |
+
"num_attention_heads": 12,
|
| 36 |
+
"num_hidden_layers": 8,
|
| 37 |
+
"pad_token_id": 1,
|
| 38 |
+
"position_embedding_type": "absolute",
|
| 39 |
+
"problem_type": "single_label_classification",
|
| 40 |
+
"relations": [
|
| 41 |
+
"head",
|
| 42 |
+
"child"
|
| 43 |
+
],
|
| 44 |
+
"torch_dtype": "float32",
|
| 45 |
+
"transformers_version": "4.26.1",
|
| 46 |
+
"type_vocab_size": 1,
|
| 47 |
+
"use_cache": true,
|
| 48 |
+
"vocab_size": 32000,
|
| 49 |
+
"weight_act": "softmax"
|
| 50 |
+
}
|
finetune/control_raising_control/checkpoint-400/merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
finetune/control_raising_control/checkpoint-400/modeling_structroberta.py
ADDED
|
@@ -0,0 +1,2146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import copy
|
| 2 |
+
import math
|
| 3 |
+
from typing import List, Optional, Tuple, Union
|
| 4 |
+
import torch
|
| 5 |
+
import torch.utils.checkpoint
|
| 6 |
+
from packaging import version
|
| 7 |
+
from torch import nn
|
| 8 |
+
import torch.nn.functional as F
|
| 9 |
+
from torch.nn import CrossEntropyLoss, MSELoss, BCEWithLogitsLoss
|
| 10 |
+
from transformers.activations import ACT2FN, gelu
|
| 11 |
+
from transformers.modeling_outputs import (
|
| 12 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
| 13 |
+
BaseModelOutputWithPoolingAndCrossAttentions,
|
| 14 |
+
MaskedLMOutput,
|
| 15 |
+
SequenceClassifierOutput
|
| 16 |
+
)
|
| 17 |
+
from transformers.modeling_utils import (
|
| 18 |
+
PreTrainedModel,
|
| 19 |
+
apply_chunking_to_forward,
|
| 20 |
+
find_pruneable_heads_and_indices,
|
| 21 |
+
prune_linear_layer,
|
| 22 |
+
)
|
| 23 |
+
from transformers.utils import logging
|
| 24 |
+
from transformers import RobertaConfig
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
logger = logging.get_logger(__name__)
|
| 28 |
+
ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
| 29 |
+
"roberta-base",
|
| 30 |
+
"roberta-large",
|
| 31 |
+
"roberta-large-mnli",
|
| 32 |
+
"distilroberta-base",
|
| 33 |
+
"roberta-base-openai-detector",
|
| 34 |
+
"roberta-large-openai-detector",
|
| 35 |
+
# See all RoBERTa models at https://huggingface.co/models?filter=roberta
|
| 36 |
+
]
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
class StructRobertaConfig(RobertaConfig):
|
| 40 |
+
model_type = "roberta"
|
| 41 |
+
|
| 42 |
+
def __init__(
|
| 43 |
+
self,
|
| 44 |
+
n_parser_layers=4,
|
| 45 |
+
conv_size=9,
|
| 46 |
+
relations=("head", "child"),
|
| 47 |
+
weight_act="softmax",
|
| 48 |
+
n_cntxt_layers=3,
|
| 49 |
+
n_cntxt_layers_2=0,
|
| 50 |
+
**kwargs,):
|
| 51 |
+
|
| 52 |
+
super().__init__(**kwargs)
|
| 53 |
+
self.n_cntxt_layers = n_cntxt_layers
|
| 54 |
+
self.n_parser_layers = n_parser_layers
|
| 55 |
+
self.n_cntxt_layers_2 = n_cntxt_layers_2
|
| 56 |
+
self.conv_size = conv_size
|
| 57 |
+
self.relations = relations
|
| 58 |
+
self.weight_act = weight_act
|
| 59 |
+
|
| 60 |
+
class Conv1d(nn.Module):
|
| 61 |
+
"""1D convolution layer."""
|
| 62 |
+
|
| 63 |
+
def __init__(self, hidden_size, kernel_size, dilation=1):
|
| 64 |
+
"""Initialization.
|
| 65 |
+
|
| 66 |
+
Args:
|
| 67 |
+
hidden_size: dimension of input embeddings
|
| 68 |
+
kernel_size: convolution kernel size
|
| 69 |
+
dilation: the spacing between the kernel points
|
| 70 |
+
"""
|
| 71 |
+
super(Conv1d, self).__init__()
|
| 72 |
+
|
| 73 |
+
if kernel_size % 2 == 0:
|
| 74 |
+
padding = (kernel_size // 2) * dilation
|
| 75 |
+
self.shift = True
|
| 76 |
+
else:
|
| 77 |
+
padding = ((kernel_size - 1) // 2) * dilation
|
| 78 |
+
self.shift = False
|
| 79 |
+
self.conv = nn.Conv1d(
|
| 80 |
+
hidden_size, hidden_size, kernel_size, padding=padding, dilation=dilation
|
| 81 |
+
)
|
| 82 |
+
|
| 83 |
+
def forward(self, x):
|
| 84 |
+
"""Compute convolution.
|
| 85 |
+
|
| 86 |
+
Args:
|
| 87 |
+
x: input embeddings
|
| 88 |
+
Returns:
|
| 89 |
+
conv_output: convolution results
|
| 90 |
+
"""
|
| 91 |
+
|
| 92 |
+
if self.shift:
|
| 93 |
+
return self.conv(x.transpose(1, 2)).transpose(1, 2)[:, 1:]
|
| 94 |
+
else:
|
| 95 |
+
return self.conv(x.transpose(1, 2)).transpose(1, 2)
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
class RobertaEmbeddings(nn.Module):
|
| 99 |
+
"""
|
| 100 |
+
Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
|
| 101 |
+
"""
|
| 102 |
+
|
| 103 |
+
# Copied from transformers.models.bert.modeling_bert.BertEmbeddings.__init__
|
| 104 |
+
def __init__(self, config):
|
| 105 |
+
super().__init__()
|
| 106 |
+
self.word_embeddings = nn.Embedding(
|
| 107 |
+
config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id
|
| 108 |
+
)
|
| 109 |
+
self.position_embeddings = nn.Embedding(
|
| 110 |
+
config.max_position_embeddings, config.hidden_size
|
| 111 |
+
)
|
| 112 |
+
self.token_type_embeddings = nn.Embedding(
|
| 113 |
+
config.type_vocab_size, config.hidden_size
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
| 117 |
+
# any TensorFlow checkpoint file
|
| 118 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 119 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 120 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
| 121 |
+
self.position_embedding_type = getattr(
|
| 122 |
+
config, "position_embedding_type", "absolute"
|
| 123 |
+
)
|
| 124 |
+
self.register_buffer(
|
| 125 |
+
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1))
|
| 126 |
+
)
|
| 127 |
+
if version.parse(torch.__version__) > version.parse("1.6.0"):
|
| 128 |
+
self.register_buffer(
|
| 129 |
+
"token_type_ids",
|
| 130 |
+
torch.zeros(self.position_ids.size(), dtype=torch.long),
|
| 131 |
+
persistent=False,
|
| 132 |
+
)
|
| 133 |
+
|
| 134 |
+
# End copy
|
| 135 |
+
self.padding_idx = config.pad_token_id
|
| 136 |
+
self.position_embeddings = nn.Embedding(
|
| 137 |
+
config.max_position_embeddings,
|
| 138 |
+
config.hidden_size,
|
| 139 |
+
padding_idx=self.padding_idx,
|
| 140 |
+
)
|
| 141 |
+
|
| 142 |
+
def forward(
|
| 143 |
+
self,
|
| 144 |
+
input_ids=None,
|
| 145 |
+
token_type_ids=None,
|
| 146 |
+
position_ids=None,
|
| 147 |
+
inputs_embeds=None,
|
| 148 |
+
past_key_values_length=0,
|
| 149 |
+
):
|
| 150 |
+
if position_ids is None:
|
| 151 |
+
if input_ids is not None:
|
| 152 |
+
# Create the position ids from the input token ids. Any padded tokens remain padded.
|
| 153 |
+
position_ids = create_position_ids_from_input_ids(
|
| 154 |
+
input_ids, self.padding_idx, past_key_values_length
|
| 155 |
+
)
|
| 156 |
+
else:
|
| 157 |
+
position_ids = self.create_position_ids_from_inputs_embeds(
|
| 158 |
+
inputs_embeds
|
| 159 |
+
)
|
| 160 |
+
|
| 161 |
+
if input_ids is not None:
|
| 162 |
+
input_shape = input_ids.size()
|
| 163 |
+
else:
|
| 164 |
+
input_shape = inputs_embeds.size()[:-1]
|
| 165 |
+
|
| 166 |
+
seq_length = input_shape[1]
|
| 167 |
+
|
| 168 |
+
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
|
| 169 |
+
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
|
| 170 |
+
# issue #5664
|
| 171 |
+
if token_type_ids is None:
|
| 172 |
+
if hasattr(self, "token_type_ids"):
|
| 173 |
+
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
|
| 174 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(
|
| 175 |
+
input_shape[0], seq_length
|
| 176 |
+
)
|
| 177 |
+
token_type_ids = buffered_token_type_ids_expanded
|
| 178 |
+
else:
|
| 179 |
+
token_type_ids = torch.zeros(
|
| 180 |
+
input_shape, dtype=torch.long, device=self.position_ids.device
|
| 181 |
+
)
|
| 182 |
+
|
| 183 |
+
if inputs_embeds is None:
|
| 184 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
| 185 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
| 186 |
+
|
| 187 |
+
embeddings = inputs_embeds + token_type_embeddings
|
| 188 |
+
if self.position_embedding_type == "absolute":
|
| 189 |
+
position_embeddings = self.position_embeddings(position_ids)
|
| 190 |
+
embeddings += position_embeddings
|
| 191 |
+
embeddings = self.LayerNorm(embeddings)
|
| 192 |
+
embeddings = self.dropout(embeddings)
|
| 193 |
+
return embeddings
|
| 194 |
+
|
| 195 |
+
def create_position_ids_from_inputs_embeds(self, inputs_embeds):
|
| 196 |
+
"""
|
| 197 |
+
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
|
| 198 |
+
|
| 199 |
+
Args:
|
| 200 |
+
inputs_embeds: torch.Tensor
|
| 201 |
+
|
| 202 |
+
Returns: torch.Tensor
|
| 203 |
+
"""
|
| 204 |
+
input_shape = inputs_embeds.size()[:-1]
|
| 205 |
+
sequence_length = input_shape[1]
|
| 206 |
+
|
| 207 |
+
position_ids = torch.arange(
|
| 208 |
+
self.padding_idx + 1,
|
| 209 |
+
sequence_length + self.padding_idx + 1,
|
| 210 |
+
dtype=torch.long,
|
| 211 |
+
device=inputs_embeds.device,
|
| 212 |
+
)
|
| 213 |
+
return position_ids.unsqueeze(0).expand(input_shape)
|
| 214 |
+
|
| 215 |
+
|
| 216 |
+
# Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->Roberta
|
| 217 |
+
class RobertaSelfAttention(nn.Module):
|
| 218 |
+
def __init__(self, config, position_embedding_type=None):
|
| 219 |
+
super().__init__()
|
| 220 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(
|
| 221 |
+
config, "embedding_size"
|
| 222 |
+
):
|
| 223 |
+
raise ValueError(
|
| 224 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
| 225 |
+
f"heads ({config.num_attention_heads})"
|
| 226 |
+
)
|
| 227 |
+
|
| 228 |
+
self.num_attention_heads = config.num_attention_heads
|
| 229 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
| 230 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
| 231 |
+
|
| 232 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
| 233 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
| 234 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
| 235 |
+
|
| 236 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
| 237 |
+
self.position_embedding_type = position_embedding_type or getattr(
|
| 238 |
+
config, "position_embedding_type", "absolute"
|
| 239 |
+
)
|
| 240 |
+
if (
|
| 241 |
+
self.position_embedding_type == "relative_key"
|
| 242 |
+
or self.position_embedding_type == "relative_key_query"
|
| 243 |
+
):
|
| 244 |
+
self.max_position_embeddings = config.max_position_embeddings
|
| 245 |
+
self.distance_embedding = nn.Embedding(
|
| 246 |
+
2 * config.max_position_embeddings - 1, self.attention_head_size
|
| 247 |
+
)
|
| 248 |
+
|
| 249 |
+
self.is_decoder = config.is_decoder
|
| 250 |
+
|
| 251 |
+
def transpose_for_scores(self, x):
|
| 252 |
+
new_x_shape = x.size()[:-1] + (
|
| 253 |
+
self.num_attention_heads,
|
| 254 |
+
self.attention_head_size,
|
| 255 |
+
)
|
| 256 |
+
x = x.view(new_x_shape)
|
| 257 |
+
return x.permute(0, 2, 1, 3)
|
| 258 |
+
|
| 259 |
+
def forward(
|
| 260 |
+
self,
|
| 261 |
+
hidden_states: torch.Tensor,
|
| 262 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 263 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 264 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
| 265 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 266 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
| 267 |
+
output_attentions: Optional[bool] = False,
|
| 268 |
+
parser_att_mask=None,
|
| 269 |
+
) -> Tuple[torch.Tensor]:
|
| 270 |
+
mixed_query_layer = self.query(hidden_states)
|
| 271 |
+
|
| 272 |
+
# If this is instantiated as a cross-attention module, the keys
|
| 273 |
+
# and values come from an encoder; the attention mask needs to be
|
| 274 |
+
# such that the encoder's padding tokens are not attended to.
|
| 275 |
+
is_cross_attention = encoder_hidden_states is not None
|
| 276 |
+
|
| 277 |
+
if is_cross_attention and past_key_value is not None:
|
| 278 |
+
# reuse k,v, cross_attentions
|
| 279 |
+
key_layer = past_key_value[0]
|
| 280 |
+
value_layer = past_key_value[1]
|
| 281 |
+
attention_mask = encoder_attention_mask
|
| 282 |
+
elif is_cross_attention:
|
| 283 |
+
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
|
| 284 |
+
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
|
| 285 |
+
attention_mask = encoder_attention_mask
|
| 286 |
+
elif past_key_value is not None:
|
| 287 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
| 288 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
| 289 |
+
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
|
| 290 |
+
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
|
| 291 |
+
else:
|
| 292 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
| 293 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
| 294 |
+
|
| 295 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
| 296 |
+
|
| 297 |
+
if self.is_decoder:
|
| 298 |
+
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
| 299 |
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
| 300 |
+
# key/value_states (first "if" case)
|
| 301 |
+
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
| 302 |
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
| 303 |
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
| 304 |
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
| 305 |
+
past_key_value = (key_layer, value_layer)
|
| 306 |
+
|
| 307 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
| 308 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
| 309 |
+
|
| 310 |
+
if (
|
| 311 |
+
self.position_embedding_type == "relative_key"
|
| 312 |
+
or self.position_embedding_type == "relative_key_query"
|
| 313 |
+
):
|
| 314 |
+
seq_length = hidden_states.size()[1]
|
| 315 |
+
position_ids_l = torch.arange(
|
| 316 |
+
seq_length, dtype=torch.long, device=hidden_states.device
|
| 317 |
+
).view(-1, 1)
|
| 318 |
+
position_ids_r = torch.arange(
|
| 319 |
+
seq_length, dtype=torch.long, device=hidden_states.device
|
| 320 |
+
).view(1, -1)
|
| 321 |
+
distance = position_ids_l - position_ids_r
|
| 322 |
+
positional_embedding = self.distance_embedding(
|
| 323 |
+
distance + self.max_position_embeddings - 1
|
| 324 |
+
)
|
| 325 |
+
positional_embedding = positional_embedding.to(
|
| 326 |
+
dtype=query_layer.dtype
|
| 327 |
+
) # fp16 compatibility
|
| 328 |
+
|
| 329 |
+
if self.position_embedding_type == "relative_key":
|
| 330 |
+
relative_position_scores = torch.einsum(
|
| 331 |
+
"bhld,lrd->bhlr", query_layer, positional_embedding
|
| 332 |
+
)
|
| 333 |
+
attention_scores = attention_scores + relative_position_scores
|
| 334 |
+
elif self.position_embedding_type == "relative_key_query":
|
| 335 |
+
relative_position_scores_query = torch.einsum(
|
| 336 |
+
"bhld,lrd->bhlr", query_layer, positional_embedding
|
| 337 |
+
)
|
| 338 |
+
relative_position_scores_key = torch.einsum(
|
| 339 |
+
"bhrd,lrd->bhlr", key_layer, positional_embedding
|
| 340 |
+
)
|
| 341 |
+
attention_scores = (
|
| 342 |
+
attention_scores
|
| 343 |
+
+ relative_position_scores_query
|
| 344 |
+
+ relative_position_scores_key
|
| 345 |
+
)
|
| 346 |
+
|
| 347 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
| 348 |
+
if attention_mask is not None:
|
| 349 |
+
# Apply the attention mask is (precomputed for all layers in RobertaModel forward() function)
|
| 350 |
+
attention_scores = attention_scores + attention_mask
|
| 351 |
+
|
| 352 |
+
if parser_att_mask is None:
|
| 353 |
+
# Normalize the attention scores to probabilities.
|
| 354 |
+
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
| 355 |
+
else:
|
| 356 |
+
attention_probs = torch.sigmoid(attention_scores) * parser_att_mask
|
| 357 |
+
|
| 358 |
+
# This is actually dropping out entire tokens to attend to, which might
|
| 359 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
| 360 |
+
attention_probs = self.dropout(attention_probs)
|
| 361 |
+
|
| 362 |
+
# Mask heads if we want to
|
| 363 |
+
if head_mask is not None:
|
| 364 |
+
attention_probs = attention_probs * head_mask
|
| 365 |
+
|
| 366 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
| 367 |
+
|
| 368 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
| 369 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
| 370 |
+
context_layer = context_layer.view(new_context_layer_shape)
|
| 371 |
+
|
| 372 |
+
outputs = (
|
| 373 |
+
(context_layer, attention_probs) if output_attentions else (context_layer,)
|
| 374 |
+
)
|
| 375 |
+
|
| 376 |
+
if self.is_decoder:
|
| 377 |
+
outputs = outputs + (past_key_value,)
|
| 378 |
+
return outputs
|
| 379 |
+
|
| 380 |
+
|
| 381 |
+
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput
|
| 382 |
+
class RobertaSelfOutput(nn.Module):
|
| 383 |
+
def __init__(self, config):
|
| 384 |
+
super().__init__()
|
| 385 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
| 386 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 387 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 388 |
+
|
| 389 |
+
def forward(
|
| 390 |
+
self, hidden_states: torch.Tensor, input_tensor: torch.Tensor
|
| 391 |
+
) -> torch.Tensor:
|
| 392 |
+
hidden_states = self.dense(hidden_states)
|
| 393 |
+
hidden_states = self.dropout(hidden_states)
|
| 394 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
| 395 |
+
return hidden_states
|
| 396 |
+
|
| 397 |
+
|
| 398 |
+
# Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->Roberta
|
| 399 |
+
class RobertaAttention(nn.Module):
|
| 400 |
+
def __init__(self, config, position_embedding_type=None):
|
| 401 |
+
super().__init__()
|
| 402 |
+
self.self = RobertaSelfAttention(
|
| 403 |
+
config, position_embedding_type=position_embedding_type
|
| 404 |
+
)
|
| 405 |
+
self.output = RobertaSelfOutput(config)
|
| 406 |
+
self.pruned_heads = set()
|
| 407 |
+
|
| 408 |
+
def prune_heads(self, heads):
|
| 409 |
+
if len(heads) == 0:
|
| 410 |
+
return
|
| 411 |
+
heads, index = find_pruneable_heads_and_indices(
|
| 412 |
+
heads,
|
| 413 |
+
self.self.num_attention_heads,
|
| 414 |
+
self.self.attention_head_size,
|
| 415 |
+
self.pruned_heads,
|
| 416 |
+
)
|
| 417 |
+
|
| 418 |
+
# Prune linear layers
|
| 419 |
+
self.self.query = prune_linear_layer(self.self.query, index)
|
| 420 |
+
self.self.key = prune_linear_layer(self.self.key, index)
|
| 421 |
+
self.self.value = prune_linear_layer(self.self.value, index)
|
| 422 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
| 423 |
+
|
| 424 |
+
# Update hyper params and store pruned heads
|
| 425 |
+
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
| 426 |
+
self.self.all_head_size = (
|
| 427 |
+
self.self.attention_head_size * self.self.num_attention_heads
|
| 428 |
+
)
|
| 429 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
| 430 |
+
|
| 431 |
+
def forward(
|
| 432 |
+
self,
|
| 433 |
+
hidden_states: torch.Tensor,
|
| 434 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 435 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 436 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
| 437 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 438 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
| 439 |
+
output_attentions: Optional[bool] = False,
|
| 440 |
+
parser_att_mask=None,
|
| 441 |
+
) -> Tuple[torch.Tensor]:
|
| 442 |
+
self_outputs = self.self(
|
| 443 |
+
hidden_states,
|
| 444 |
+
attention_mask,
|
| 445 |
+
head_mask,
|
| 446 |
+
encoder_hidden_states,
|
| 447 |
+
encoder_attention_mask,
|
| 448 |
+
past_key_value,
|
| 449 |
+
output_attentions,
|
| 450 |
+
parser_att_mask=parser_att_mask,
|
| 451 |
+
)
|
| 452 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
| 453 |
+
outputs = (attention_output,) + self_outputs[
|
| 454 |
+
1:
|
| 455 |
+
] # add attentions if we output them
|
| 456 |
+
return outputs
|
| 457 |
+
|
| 458 |
+
|
| 459 |
+
# Copied from transformers.models.bert.modeling_bert.BertIntermediate
|
| 460 |
+
class RobertaIntermediate(nn.Module):
|
| 461 |
+
def __init__(self, config):
|
| 462 |
+
super().__init__()
|
| 463 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
| 464 |
+
if isinstance(config.hidden_act, str):
|
| 465 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
| 466 |
+
else:
|
| 467 |
+
self.intermediate_act_fn = config.hidden_act
|
| 468 |
+
|
| 469 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 470 |
+
hidden_states = self.dense(hidden_states)
|
| 471 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
| 472 |
+
return hidden_states
|
| 473 |
+
|
| 474 |
+
|
| 475 |
+
# Copied from transformers.models.bert.modeling_bert.BertOutput
|
| 476 |
+
class RobertaOutput(nn.Module):
|
| 477 |
+
def __init__(self, config):
|
| 478 |
+
super().__init__()
|
| 479 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
| 480 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 481 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 482 |
+
|
| 483 |
+
def forward(
|
| 484 |
+
self, hidden_states: torch.Tensor, input_tensor: torch.Tensor
|
| 485 |
+
) -> torch.Tensor:
|
| 486 |
+
hidden_states = self.dense(hidden_states)
|
| 487 |
+
hidden_states = self.dropout(hidden_states)
|
| 488 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
| 489 |
+
return hidden_states
|
| 490 |
+
|
| 491 |
+
|
| 492 |
+
# Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->Roberta
|
| 493 |
+
class RobertaLayer(nn.Module):
|
| 494 |
+
def __init__(self, config):
|
| 495 |
+
super().__init__()
|
| 496 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
| 497 |
+
self.seq_len_dim = 1
|
| 498 |
+
self.attention = RobertaAttention(config)
|
| 499 |
+
self.is_decoder = config.is_decoder
|
| 500 |
+
self.add_cross_attention = config.add_cross_attention
|
| 501 |
+
if self.add_cross_attention:
|
| 502 |
+
if not self.is_decoder:
|
| 503 |
+
raise ValueError(
|
| 504 |
+
f"{self} should be used as a decoder model if cross attention is added"
|
| 505 |
+
)
|
| 506 |
+
self.crossattention = RobertaAttention(
|
| 507 |
+
config, position_embedding_type="absolute"
|
| 508 |
+
)
|
| 509 |
+
self.intermediate = RobertaIntermediate(config)
|
| 510 |
+
self.output = RobertaOutput(config)
|
| 511 |
+
|
| 512 |
+
def forward(
|
| 513 |
+
self,
|
| 514 |
+
hidden_states: torch.Tensor,
|
| 515 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 516 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 517 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
| 518 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 519 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
| 520 |
+
output_attentions: Optional[bool] = False,
|
| 521 |
+
parser_att_mask=None,
|
| 522 |
+
) -> Tuple[torch.Tensor]:
|
| 523 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
| 524 |
+
self_attn_past_key_value = (
|
| 525 |
+
past_key_value[:2] if past_key_value is not None else None
|
| 526 |
+
)
|
| 527 |
+
self_attention_outputs = self.attention(
|
| 528 |
+
hidden_states,
|
| 529 |
+
attention_mask,
|
| 530 |
+
head_mask,
|
| 531 |
+
output_attentions=output_attentions,
|
| 532 |
+
past_key_value=self_attn_past_key_value,
|
| 533 |
+
parser_att_mask=parser_att_mask,
|
| 534 |
+
)
|
| 535 |
+
attention_output = self_attention_outputs[0]
|
| 536 |
+
|
| 537 |
+
# if decoder, the last output is tuple of self-attn cache
|
| 538 |
+
if self.is_decoder:
|
| 539 |
+
outputs = self_attention_outputs[1:-1]
|
| 540 |
+
present_key_value = self_attention_outputs[-1]
|
| 541 |
+
else:
|
| 542 |
+
outputs = self_attention_outputs[
|
| 543 |
+
1:
|
| 544 |
+
] # add self attentions if we output attention weights
|
| 545 |
+
|
| 546 |
+
cross_attn_present_key_value = None
|
| 547 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
| 548 |
+
if not hasattr(self, "crossattention"):
|
| 549 |
+
raise ValueError(
|
| 550 |
+
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers by setting `config.add_cross_attention=True`"
|
| 551 |
+
)
|
| 552 |
+
|
| 553 |
+
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
|
| 554 |
+
cross_attn_past_key_value = (
|
| 555 |
+
past_key_value[-2:] if past_key_value is not None else None
|
| 556 |
+
)
|
| 557 |
+
cross_attention_outputs = self.crossattention(
|
| 558 |
+
attention_output,
|
| 559 |
+
attention_mask,
|
| 560 |
+
head_mask,
|
| 561 |
+
encoder_hidden_states,
|
| 562 |
+
encoder_attention_mask,
|
| 563 |
+
cross_attn_past_key_value,
|
| 564 |
+
output_attentions,
|
| 565 |
+
)
|
| 566 |
+
attention_output = cross_attention_outputs[0]
|
| 567 |
+
outputs = (
|
| 568 |
+
outputs + cross_attention_outputs[1:-1]
|
| 569 |
+
) # add cross attentions if we output attention weights
|
| 570 |
+
|
| 571 |
+
# add cross-attn cache to positions 3,4 of present_key_value tuple
|
| 572 |
+
cross_attn_present_key_value = cross_attention_outputs[-1]
|
| 573 |
+
present_key_value = present_key_value + cross_attn_present_key_value
|
| 574 |
+
|
| 575 |
+
layer_output = apply_chunking_to_forward(
|
| 576 |
+
self.feed_forward_chunk,
|
| 577 |
+
self.chunk_size_feed_forward,
|
| 578 |
+
self.seq_len_dim,
|
| 579 |
+
attention_output,
|
| 580 |
+
)
|
| 581 |
+
outputs = (layer_output,) + outputs
|
| 582 |
+
|
| 583 |
+
# if decoder, return the attn key/values as the last output
|
| 584 |
+
if self.is_decoder:
|
| 585 |
+
outputs = outputs + (present_key_value,)
|
| 586 |
+
|
| 587 |
+
return outputs
|
| 588 |
+
|
| 589 |
+
def feed_forward_chunk(self, attention_output):
|
| 590 |
+
intermediate_output = self.intermediate(attention_output)
|
| 591 |
+
layer_output = self.output(intermediate_output, attention_output)
|
| 592 |
+
return layer_output
|
| 593 |
+
|
| 594 |
+
|
| 595 |
+
# Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->Roberta
|
| 596 |
+
class RobertaEncoder(nn.Module):
|
| 597 |
+
def __init__(self, config):
|
| 598 |
+
super().__init__()
|
| 599 |
+
self.config = config
|
| 600 |
+
self.layer = nn.ModuleList(
|
| 601 |
+
[RobertaLayer(config) for _ in range(config.num_hidden_layers)]
|
| 602 |
+
)
|
| 603 |
+
self.gradient_checkpointing = False
|
| 604 |
+
|
| 605 |
+
def forward(
|
| 606 |
+
self,
|
| 607 |
+
hidden_states: torch.Tensor,
|
| 608 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 609 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 610 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
| 611 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 612 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
| 613 |
+
use_cache: Optional[bool] = None,
|
| 614 |
+
output_attentions: Optional[bool] = False,
|
| 615 |
+
output_hidden_states: Optional[bool] = False,
|
| 616 |
+
return_dict: Optional[bool] = True,
|
| 617 |
+
parser_att_mask=None,
|
| 618 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
|
| 619 |
+
all_hidden_states = () if output_hidden_states else None
|
| 620 |
+
all_self_attentions = () if output_attentions else None
|
| 621 |
+
all_cross_attentions = (
|
| 622 |
+
() if output_attentions and self.config.add_cross_attention else None
|
| 623 |
+
)
|
| 624 |
+
|
| 625 |
+
next_decoder_cache = () if use_cache else None
|
| 626 |
+
for i, layer_module in enumerate(self.layer):
|
| 627 |
+
if output_hidden_states:
|
| 628 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 629 |
+
|
| 630 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
| 631 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
| 632 |
+
|
| 633 |
+
if self.gradient_checkpointing and self.training:
|
| 634 |
+
|
| 635 |
+
if use_cache:
|
| 636 |
+
logger.warning(
|
| 637 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
| 638 |
+
)
|
| 639 |
+
use_cache = False
|
| 640 |
+
|
| 641 |
+
def create_custom_forward(module):
|
| 642 |
+
def custom_forward(*inputs):
|
| 643 |
+
return module(*inputs, past_key_value, output_attentions)
|
| 644 |
+
|
| 645 |
+
return custom_forward
|
| 646 |
+
|
| 647 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
| 648 |
+
create_custom_forward(layer_module),
|
| 649 |
+
hidden_states,
|
| 650 |
+
attention_mask,
|
| 651 |
+
layer_head_mask,
|
| 652 |
+
encoder_hidden_states,
|
| 653 |
+
encoder_attention_mask,
|
| 654 |
+
)
|
| 655 |
+
else:
|
| 656 |
+
if parser_att_mask is not None:
|
| 657 |
+
layer_outputs = layer_module(
|
| 658 |
+
hidden_states,
|
| 659 |
+
attention_mask,
|
| 660 |
+
layer_head_mask,
|
| 661 |
+
encoder_hidden_states,
|
| 662 |
+
encoder_attention_mask,
|
| 663 |
+
past_key_value,
|
| 664 |
+
output_attentions,
|
| 665 |
+
parser_att_mask=parser_att_mask[i])
|
| 666 |
+
else:
|
| 667 |
+
layer_outputs = layer_module(
|
| 668 |
+
hidden_states,
|
| 669 |
+
attention_mask,
|
| 670 |
+
layer_head_mask,
|
| 671 |
+
encoder_hidden_states,
|
| 672 |
+
encoder_attention_mask,
|
| 673 |
+
past_key_value,
|
| 674 |
+
output_attentions,
|
| 675 |
+
parser_att_mask=None)
|
| 676 |
+
|
| 677 |
+
|
| 678 |
+
hidden_states = layer_outputs[0]
|
| 679 |
+
if use_cache:
|
| 680 |
+
next_decoder_cache += (layer_outputs[-1],)
|
| 681 |
+
if output_attentions:
|
| 682 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
| 683 |
+
if self.config.add_cross_attention:
|
| 684 |
+
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
|
| 685 |
+
|
| 686 |
+
if output_hidden_states:
|
| 687 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 688 |
+
|
| 689 |
+
if not return_dict:
|
| 690 |
+
return tuple(
|
| 691 |
+
v
|
| 692 |
+
for v in [
|
| 693 |
+
hidden_states,
|
| 694 |
+
next_decoder_cache,
|
| 695 |
+
all_hidden_states,
|
| 696 |
+
all_self_attentions,
|
| 697 |
+
all_cross_attentions,
|
| 698 |
+
]
|
| 699 |
+
if v is not None
|
| 700 |
+
)
|
| 701 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
| 702 |
+
last_hidden_state=hidden_states,
|
| 703 |
+
past_key_values=next_decoder_cache,
|
| 704 |
+
hidden_states=all_hidden_states,
|
| 705 |
+
attentions=all_self_attentions,
|
| 706 |
+
cross_attentions=all_cross_attentions,
|
| 707 |
+
)
|
| 708 |
+
|
| 709 |
+
|
| 710 |
+
# Copied from transformers.models.bert.modeling_bert.BertPooler
|
| 711 |
+
class RobertaPooler(nn.Module):
|
| 712 |
+
def __init__(self, config):
|
| 713 |
+
super().__init__()
|
| 714 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
| 715 |
+
self.activation = nn.Tanh()
|
| 716 |
+
|
| 717 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 718 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
| 719 |
+
# to the first token.
|
| 720 |
+
first_token_tensor = hidden_states[:, 0]
|
| 721 |
+
pooled_output = self.dense(first_token_tensor)
|
| 722 |
+
pooled_output = self.activation(pooled_output)
|
| 723 |
+
return pooled_output
|
| 724 |
+
|
| 725 |
+
|
| 726 |
+
class RobertaPreTrainedModel(PreTrainedModel):
|
| 727 |
+
"""
|
| 728 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
| 729 |
+
models.
|
| 730 |
+
"""
|
| 731 |
+
|
| 732 |
+
config_class = RobertaConfig
|
| 733 |
+
base_model_prefix = "roberta"
|
| 734 |
+
supports_gradient_checkpointing = True
|
| 735 |
+
|
| 736 |
+
# Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights
|
| 737 |
+
def _init_weights(self, module):
|
| 738 |
+
"""Initialize the weights"""
|
| 739 |
+
if isinstance(module, nn.Linear):
|
| 740 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
| 741 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
| 742 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 743 |
+
if module.bias is not None:
|
| 744 |
+
module.bias.data.zero_()
|
| 745 |
+
elif isinstance(module, nn.Embedding):
|
| 746 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 747 |
+
if module.padding_idx is not None:
|
| 748 |
+
module.weight.data[module.padding_idx].zero_()
|
| 749 |
+
elif isinstance(module, nn.LayerNorm):
|
| 750 |
+
if module.bias is not None:
|
| 751 |
+
module.bias.data.zero_()
|
| 752 |
+
module.weight.data.fill_(1.0)
|
| 753 |
+
|
| 754 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
| 755 |
+
if isinstance(module, RobertaEncoder):
|
| 756 |
+
module.gradient_checkpointing = value
|
| 757 |
+
|
| 758 |
+
def update_keys_to_ignore(self, config, del_keys_to_ignore):
|
| 759 |
+
"""Remove some keys from ignore list"""
|
| 760 |
+
if not config.tie_word_embeddings:
|
| 761 |
+
# must make a new list, or the class variable gets modified!
|
| 762 |
+
self._keys_to_ignore_on_save = [
|
| 763 |
+
k for k in self._keys_to_ignore_on_save if k not in del_keys_to_ignore
|
| 764 |
+
]
|
| 765 |
+
self._keys_to_ignore_on_load_missing = [
|
| 766 |
+
k
|
| 767 |
+
for k in self._keys_to_ignore_on_load_missing
|
| 768 |
+
if k not in del_keys_to_ignore
|
| 769 |
+
]
|
| 770 |
+
|
| 771 |
+
|
| 772 |
+
ROBERTA_START_DOCSTRING = r"""
|
| 773 |
+
|
| 774 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
| 775 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
| 776 |
+
etc.)
|
| 777 |
+
|
| 778 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
| 779 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
| 780 |
+
and behavior.
|
| 781 |
+
|
| 782 |
+
Parameters:
|
| 783 |
+
config ([`RobertaConfig`]): Model configuration class with all the parameters of the
|
| 784 |
+
model. Initializing with a config file does not load the weights associated with the model, only the
|
| 785 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
| 786 |
+
"""
|
| 787 |
+
|
| 788 |
+
|
| 789 |
+
ROBERTA_INPUTS_DOCSTRING = r"""
|
| 790 |
+
Args:
|
| 791 |
+
input_ids (`torch.LongTensor` of shape `({0})`):
|
| 792 |
+
Indices of input sequence tokens in the vocabulary.
|
| 793 |
+
|
| 794 |
+
Indices can be obtained using [`RobertaTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 795 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 796 |
+
|
| 797 |
+
[What are input IDs?](../glossary#input-ids)
|
| 798 |
+
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
| 799 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 800 |
+
|
| 801 |
+
- 1 for tokens that are **not masked**,
|
| 802 |
+
- 0 for tokens that are **masked**.
|
| 803 |
+
|
| 804 |
+
[What are attention masks?](../glossary#attention-mask)
|
| 805 |
+
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
| 806 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
| 807 |
+
1]`:
|
| 808 |
+
|
| 809 |
+
- 0 corresponds to a *sentence A* token,
|
| 810 |
+
- 1 corresponds to a *sentence B* token.
|
| 811 |
+
|
| 812 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
| 813 |
+
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
| 814 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
| 815 |
+
config.max_position_embeddings - 1]`.
|
| 816 |
+
|
| 817 |
+
[What are position IDs?](../glossary#position-ids)
|
| 818 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
| 819 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
| 820 |
+
|
| 821 |
+
- 1 indicates the head is **not masked**,
|
| 822 |
+
- 0 indicates the head is **masked**.
|
| 823 |
+
|
| 824 |
+
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
| 825 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
| 826 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
| 827 |
+
model's internal embedding lookup matrix.
|
| 828 |
+
output_attentions (`bool`, *optional*):
|
| 829 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 830 |
+
tensors for more detail.
|
| 831 |
+
output_hidden_states (`bool`, *optional*):
|
| 832 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 833 |
+
more detail.
|
| 834 |
+
return_dict (`bool`, *optional*):
|
| 835 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 836 |
+
"""
|
| 837 |
+
|
| 838 |
+
|
| 839 |
+
class RobertaModel(RobertaPreTrainedModel):
|
| 840 |
+
"""
|
| 841 |
+
|
| 842 |
+
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
|
| 843 |
+
cross-attention is added between the self-attention layers, following the architecture described in *Attention is
|
| 844 |
+
all you need*_ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
|
| 845 |
+
Kaiser and Illia Polosukhin.
|
| 846 |
+
|
| 847 |
+
To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
|
| 848 |
+
to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
|
| 849 |
+
`add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
|
| 850 |
+
|
| 851 |
+
.. _*Attention is all you need*: https://arxiv.org/abs/1706.03762
|
| 852 |
+
|
| 853 |
+
"""
|
| 854 |
+
|
| 855 |
+
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
| 856 |
+
|
| 857 |
+
# Copied from transformers.models.bert.modeling_bert.BertModel.__init__ with Bert->Roberta
|
| 858 |
+
def __init__(self, config, add_pooling_layer=True):
|
| 859 |
+
super().__init__(config)
|
| 860 |
+
self.config = config
|
| 861 |
+
|
| 862 |
+
self.embeddings = RobertaEmbeddings(config)
|
| 863 |
+
self.encoder = RobertaEncoder(config)
|
| 864 |
+
|
| 865 |
+
self.pooler = RobertaPooler(config) if add_pooling_layer else None
|
| 866 |
+
|
| 867 |
+
# Initialize weights and apply final processing
|
| 868 |
+
self.post_init()
|
| 869 |
+
|
| 870 |
+
def get_input_embeddings(self):
|
| 871 |
+
return self.embeddings.word_embeddings
|
| 872 |
+
|
| 873 |
+
def set_input_embeddings(self, value):
|
| 874 |
+
self.embeddings.word_embeddings = value
|
| 875 |
+
|
| 876 |
+
def _prune_heads(self, heads_to_prune):
|
| 877 |
+
"""
|
| 878 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
| 879 |
+
class PreTrainedModel
|
| 880 |
+
"""
|
| 881 |
+
for layer, heads in heads_to_prune.items():
|
| 882 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
| 883 |
+
|
| 884 |
+
# Copied from transformers.models.bert.modeling_bert.BertModel.forward
|
| 885 |
+
def forward(
|
| 886 |
+
self,
|
| 887 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 888 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 889 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
| 890 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 891 |
+
head_mask: Optional[torch.Tensor] = None,
|
| 892 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 893 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 894 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
| 895 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 896 |
+
use_cache: Optional[bool] = None,
|
| 897 |
+
output_attentions: Optional[bool] = None,
|
| 898 |
+
output_hidden_states: Optional[bool] = None,
|
| 899 |
+
return_dict: Optional[bool] = None,
|
| 900 |
+
parser_att_mask=None,
|
| 901 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
|
| 902 |
+
r"""
|
| 903 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
| 904 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
| 905 |
+
the model is configured as a decoder.
|
| 906 |
+
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 907 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
| 908 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
| 909 |
+
|
| 910 |
+
- 1 for tokens that are **not masked**,
|
| 911 |
+
- 0 for tokens that are **masked**.
|
| 912 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
| 913 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
| 914 |
+
|
| 915 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
| 916 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
| 917 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
| 918 |
+
use_cache (`bool`, *optional*):
|
| 919 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
| 920 |
+
`past_key_values`).
|
| 921 |
+
"""
|
| 922 |
+
output_attentions = (
|
| 923 |
+
output_attentions
|
| 924 |
+
if output_attentions is not None
|
| 925 |
+
else self.config.output_attentions
|
| 926 |
+
)
|
| 927 |
+
output_hidden_states = (
|
| 928 |
+
output_hidden_states
|
| 929 |
+
if output_hidden_states is not None
|
| 930 |
+
else self.config.output_hidden_states
|
| 931 |
+
)
|
| 932 |
+
return_dict = (
|
| 933 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
| 934 |
+
)
|
| 935 |
+
|
| 936 |
+
if self.config.is_decoder:
|
| 937 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 938 |
+
else:
|
| 939 |
+
use_cache = False
|
| 940 |
+
|
| 941 |
+
if input_ids is not None and inputs_embeds is not None:
|
| 942 |
+
raise ValueError(
|
| 943 |
+
"You cannot specify both input_ids and inputs_embeds at the same time"
|
| 944 |
+
)
|
| 945 |
+
elif input_ids is not None:
|
| 946 |
+
input_shape = input_ids.size()
|
| 947 |
+
elif inputs_embeds is not None:
|
| 948 |
+
input_shape = inputs_embeds.size()[:-1]
|
| 949 |
+
else:
|
| 950 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
| 951 |
+
|
| 952 |
+
batch_size, seq_length = input_shape
|
| 953 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
| 954 |
+
|
| 955 |
+
# past_key_values_length
|
| 956 |
+
past_key_values_length = (
|
| 957 |
+
past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
| 958 |
+
)
|
| 959 |
+
|
| 960 |
+
if attention_mask is None:
|
| 961 |
+
attention_mask = torch.ones(
|
| 962 |
+
((batch_size, seq_length + past_key_values_length)), device=device
|
| 963 |
+
)
|
| 964 |
+
|
| 965 |
+
if token_type_ids is None:
|
| 966 |
+
if hasattr(self.embeddings, "token_type_ids"):
|
| 967 |
+
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
|
| 968 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(
|
| 969 |
+
batch_size, seq_length
|
| 970 |
+
)
|
| 971 |
+
token_type_ids = buffered_token_type_ids_expanded
|
| 972 |
+
else:
|
| 973 |
+
token_type_ids = torch.zeros(
|
| 974 |
+
input_shape, dtype=torch.long, device=device
|
| 975 |
+
)
|
| 976 |
+
|
| 977 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
| 978 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
| 979 |
+
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(
|
| 980 |
+
attention_mask, input_shape, device
|
| 981 |
+
)
|
| 982 |
+
|
| 983 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
| 984 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
| 985 |
+
if self.config.is_decoder and encoder_hidden_states is not None:
|
| 986 |
+
(
|
| 987 |
+
encoder_batch_size,
|
| 988 |
+
encoder_sequence_length,
|
| 989 |
+
_,
|
| 990 |
+
) = encoder_hidden_states.size()
|
| 991 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
| 992 |
+
if encoder_attention_mask is None:
|
| 993 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
| 994 |
+
encoder_extended_attention_mask = self.invert_attention_mask(
|
| 995 |
+
encoder_attention_mask
|
| 996 |
+
)
|
| 997 |
+
else:
|
| 998 |
+
encoder_extended_attention_mask = None
|
| 999 |
+
|
| 1000 |
+
# Prepare head mask if needed
|
| 1001 |
+
# 1.0 in head_mask indicate we keep the head
|
| 1002 |
+
# attention_probs has shape bsz x n_heads x N x N
|
| 1003 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
| 1004 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
| 1005 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
| 1006 |
+
|
| 1007 |
+
embedding_output = self.embeddings(
|
| 1008 |
+
input_ids=input_ids,
|
| 1009 |
+
position_ids=position_ids,
|
| 1010 |
+
token_type_ids=token_type_ids,
|
| 1011 |
+
inputs_embeds=inputs_embeds,
|
| 1012 |
+
past_key_values_length=past_key_values_length,
|
| 1013 |
+
)
|
| 1014 |
+
encoder_outputs = self.encoder(
|
| 1015 |
+
embedding_output,
|
| 1016 |
+
attention_mask=extended_attention_mask,
|
| 1017 |
+
head_mask=head_mask,
|
| 1018 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 1019 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
| 1020 |
+
past_key_values=past_key_values,
|
| 1021 |
+
use_cache=use_cache,
|
| 1022 |
+
output_attentions=output_attentions,
|
| 1023 |
+
output_hidden_states=output_hidden_states,
|
| 1024 |
+
return_dict=return_dict,
|
| 1025 |
+
parser_att_mask=parser_att_mask,
|
| 1026 |
+
)
|
| 1027 |
+
sequence_output = encoder_outputs[0]
|
| 1028 |
+
pooled_output = (
|
| 1029 |
+
self.pooler(sequence_output) if self.pooler is not None else None
|
| 1030 |
+
)
|
| 1031 |
+
|
| 1032 |
+
if not return_dict:
|
| 1033 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
| 1034 |
+
|
| 1035 |
+
return BaseModelOutputWithPoolingAndCrossAttentions(
|
| 1036 |
+
last_hidden_state=sequence_output,
|
| 1037 |
+
pooler_output=pooled_output,
|
| 1038 |
+
past_key_values=encoder_outputs.past_key_values,
|
| 1039 |
+
hidden_states=encoder_outputs.hidden_states,
|
| 1040 |
+
attentions=encoder_outputs.attentions,
|
| 1041 |
+
cross_attentions=encoder_outputs.cross_attentions,
|
| 1042 |
+
)
|
| 1043 |
+
|
| 1044 |
+
|
| 1045 |
+
class StructRoberta(RobertaPreTrainedModel):
|
| 1046 |
+
_keys_to_ignore_on_save = [r"lm_head.decoder.weight", r"lm_head.decoder.bias"]
|
| 1047 |
+
_keys_to_ignore_on_load_missing = [
|
| 1048 |
+
r"position_ids",
|
| 1049 |
+
r"lm_head.decoder.weight",
|
| 1050 |
+
r"lm_head.decoder.bias",
|
| 1051 |
+
]
|
| 1052 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
| 1053 |
+
|
| 1054 |
+
def __init__(self, config):
|
| 1055 |
+
super().__init__(config)
|
| 1056 |
+
|
| 1057 |
+
if config.is_decoder:
|
| 1058 |
+
logger.warning(
|
| 1059 |
+
"If you want to use `RobertaForMaskedLM` make sure `config.is_decoder=False` for "
|
| 1060 |
+
"bi-directional self-attention."
|
| 1061 |
+
)
|
| 1062 |
+
|
| 1063 |
+
|
| 1064 |
+
if config.n_cntxt_layers > 0:
|
| 1065 |
+
config_cntxt = copy.deepcopy(config)
|
| 1066 |
+
config_cntxt.num_hidden_layers = config.n_cntxt_layers
|
| 1067 |
+
|
| 1068 |
+
self.cntxt_layers = RobertaModel(config_cntxt, add_pooling_layer=False)
|
| 1069 |
+
|
| 1070 |
+
if config.n_cntxt_layers_2 > 0:
|
| 1071 |
+
self.parser_layers_1 = nn.ModuleList(
|
| 1072 |
+
[
|
| 1073 |
+
nn.Sequential(
|
| 1074 |
+
Conv1d(config.hidden_size, config.conv_size),
|
| 1075 |
+
nn.LayerNorm(config.hidden_size, elementwise_affine=False),
|
| 1076 |
+
nn.Tanh(),
|
| 1077 |
+
)
|
| 1078 |
+
for i in range(int(config.n_parser_layers/2))
|
| 1079 |
+
]
|
| 1080 |
+
)
|
| 1081 |
+
|
| 1082 |
+
self.distance_ff_1 = nn.Sequential(
|
| 1083 |
+
Conv1d(config.hidden_size, 2),
|
| 1084 |
+
nn.LayerNorm(config.hidden_size, elementwise_affine=False),
|
| 1085 |
+
nn.Tanh(),
|
| 1086 |
+
nn.Linear(config.hidden_size, 1),
|
| 1087 |
+
)
|
| 1088 |
+
|
| 1089 |
+
self.height_ff_1 = nn.Sequential(
|
| 1090 |
+
nn.Linear(config.hidden_size, config.hidden_size),
|
| 1091 |
+
nn.LayerNorm(config.hidden_size, elementwise_affine=False),
|
| 1092 |
+
nn.Tanh(),
|
| 1093 |
+
nn.Linear(config.hidden_size, 1),
|
| 1094 |
+
)
|
| 1095 |
+
|
| 1096 |
+
n_rel = len(config.relations)
|
| 1097 |
+
self._rel_weight_1 = nn.Parameter(
|
| 1098 |
+
torch.zeros((config.n_cntxt_layers_2, config.num_attention_heads, n_rel))
|
| 1099 |
+
)
|
| 1100 |
+
self._rel_weight_1.data.normal_(0, 0.1)
|
| 1101 |
+
|
| 1102 |
+
self._scaler_1 = nn.Parameter(torch.zeros(2))
|
| 1103 |
+
|
| 1104 |
+
config_cntxt_2 = copy.deepcopy(config)
|
| 1105 |
+
config_cntxt_2.num_hidden_layers = config.n_cntxt_layers_2
|
| 1106 |
+
|
| 1107 |
+
self.cntxt_layers_2 = RobertaModel(config_cntxt_2, add_pooling_layer=False)
|
| 1108 |
+
|
| 1109 |
+
|
| 1110 |
+
self.parser_layers_2 = nn.ModuleList(
|
| 1111 |
+
[
|
| 1112 |
+
nn.Sequential(
|
| 1113 |
+
Conv1d(config.hidden_size, config.conv_size),
|
| 1114 |
+
nn.LayerNorm(config.hidden_size, elementwise_affine=False),
|
| 1115 |
+
nn.Tanh(),
|
| 1116 |
+
)
|
| 1117 |
+
for i in range(int(config.n_parser_layers/2))
|
| 1118 |
+
]
|
| 1119 |
+
)
|
| 1120 |
+
|
| 1121 |
+
self.distance_ff_2 = nn.Sequential(
|
| 1122 |
+
Conv1d(config.hidden_size, 2),
|
| 1123 |
+
nn.LayerNorm(config.hidden_size, elementwise_affine=False),
|
| 1124 |
+
nn.Tanh(),
|
| 1125 |
+
nn.Linear(config.hidden_size, 1),
|
| 1126 |
+
)
|
| 1127 |
+
|
| 1128 |
+
self.height_ff_2 = nn.Sequential(
|
| 1129 |
+
nn.Linear(config.hidden_size, config.hidden_size),
|
| 1130 |
+
nn.LayerNorm(config.hidden_size, elementwise_affine=False),
|
| 1131 |
+
nn.Tanh(),
|
| 1132 |
+
nn.Linear(config.hidden_size, 1),
|
| 1133 |
+
)
|
| 1134 |
+
|
| 1135 |
+
n_rel = len(config.relations)
|
| 1136 |
+
self._rel_weight_2 = nn.Parameter(
|
| 1137 |
+
torch.zeros((config.num_hidden_layers, config.num_attention_heads, n_rel))
|
| 1138 |
+
)
|
| 1139 |
+
self._rel_weight_2.data.normal_(0, 0.1)
|
| 1140 |
+
|
| 1141 |
+
self._scaler_2 = nn.Parameter(torch.zeros(2))
|
| 1142 |
+
|
| 1143 |
+
else:
|
| 1144 |
+
self.parser_layers = nn.ModuleList(
|
| 1145 |
+
[
|
| 1146 |
+
nn.Sequential(
|
| 1147 |
+
Conv1d(config.hidden_size, config.conv_size),
|
| 1148 |
+
nn.LayerNorm(config.hidden_size, elementwise_affine=False),
|
| 1149 |
+
nn.Tanh(),
|
| 1150 |
+
)
|
| 1151 |
+
for i in range(config.n_parser_layers)
|
| 1152 |
+
]
|
| 1153 |
+
)
|
| 1154 |
+
|
| 1155 |
+
self.distance_ff = nn.Sequential(
|
| 1156 |
+
Conv1d(config.hidden_size, 2),
|
| 1157 |
+
nn.LayerNorm(config.hidden_size, elementwise_affine=False),
|
| 1158 |
+
nn.Tanh(),
|
| 1159 |
+
nn.Linear(config.hidden_size, 1),
|
| 1160 |
+
)
|
| 1161 |
+
|
| 1162 |
+
self.height_ff = nn.Sequential(
|
| 1163 |
+
nn.Linear(config.hidden_size, config.hidden_size),
|
| 1164 |
+
nn.LayerNorm(config.hidden_size, elementwise_affine=False),
|
| 1165 |
+
nn.Tanh(),
|
| 1166 |
+
nn.Linear(config.hidden_size, 1),
|
| 1167 |
+
)
|
| 1168 |
+
|
| 1169 |
+
n_rel = len(config.relations)
|
| 1170 |
+
self._rel_weight = nn.Parameter(
|
| 1171 |
+
torch.zeros((config.num_hidden_layers, config.num_attention_heads, n_rel))
|
| 1172 |
+
)
|
| 1173 |
+
self._rel_weight.data.normal_(0, 0.1)
|
| 1174 |
+
|
| 1175 |
+
self._scaler = nn.Parameter(torch.zeros(2))
|
| 1176 |
+
|
| 1177 |
+
self.roberta = RobertaModel(config, add_pooling_layer=False)
|
| 1178 |
+
|
| 1179 |
+
if config.n_cntxt_layers > 0:
|
| 1180 |
+
self.cntxt_layers.embeddings = self.roberta.embeddings
|
| 1181 |
+
if config.n_cntxt_layers_2 > 0:
|
| 1182 |
+
self.cntxt_layers_2.embeddings = self.roberta.embeddings
|
| 1183 |
+
|
| 1184 |
+
self.lm_head = RobertaLMHead(config)
|
| 1185 |
+
|
| 1186 |
+
self.pad = config.pad_token_id
|
| 1187 |
+
|
| 1188 |
+
# The LM head weights require special treatment only when they are tied with the word embeddings
|
| 1189 |
+
self.update_keys_to_ignore(config, ["lm_head.decoder.weight"])
|
| 1190 |
+
|
| 1191 |
+
# Initialize weights and apply final processing
|
| 1192 |
+
self.post_init()
|
| 1193 |
+
|
| 1194 |
+
def get_output_embeddings(self):
|
| 1195 |
+
return self.lm_head.decoder
|
| 1196 |
+
|
| 1197 |
+
def set_output_embeddings(self, new_embeddings):
|
| 1198 |
+
self.lm_head.decoder = new_embeddings
|
| 1199 |
+
|
| 1200 |
+
@property
|
| 1201 |
+
def scaler(self):
|
| 1202 |
+
return self._scaler.exp()
|
| 1203 |
+
|
| 1204 |
+
@property
|
| 1205 |
+
def scaler_1(self):
|
| 1206 |
+
return self._scaler_1.exp()
|
| 1207 |
+
|
| 1208 |
+
@property
|
| 1209 |
+
def scaler_2(self):
|
| 1210 |
+
return self._scaler_2.exp()
|
| 1211 |
+
|
| 1212 |
+
@property
|
| 1213 |
+
def rel_weight(self):
|
| 1214 |
+
if self.config.weight_act == "sigmoid":
|
| 1215 |
+
return torch.sigmoid(self._rel_weight)
|
| 1216 |
+
elif self.config.weight_act == "softmax":
|
| 1217 |
+
return torch.softmax(self._rel_weight, dim=-1)
|
| 1218 |
+
|
| 1219 |
+
@property
|
| 1220 |
+
def rel_weight_1(self):
|
| 1221 |
+
if self.config.weight_act == "sigmoid":
|
| 1222 |
+
return torch.sigmoid(self._rel_weight_1)
|
| 1223 |
+
elif self.config.weight_act == "softmax":
|
| 1224 |
+
return torch.softmax(self._rel_weight_1, dim=-1)
|
| 1225 |
+
|
| 1226 |
+
|
| 1227 |
+
@property
|
| 1228 |
+
def rel_weight_2(self):
|
| 1229 |
+
if self.config.weight_act == "sigmoid":
|
| 1230 |
+
return torch.sigmoid(self._rel_weight_2)
|
| 1231 |
+
elif self.config.weight_act == "softmax":
|
| 1232 |
+
return torch.softmax(self._rel_weight_2, dim=-1)
|
| 1233 |
+
|
| 1234 |
+
|
| 1235 |
+
def compute_block(self, distance, height, n_cntxt_layers=0):
|
| 1236 |
+
"""Compute constituents from distance and height."""
|
| 1237 |
+
|
| 1238 |
+
if n_cntxt_layers>0:
|
| 1239 |
+
if n_cntxt_layers == 1:
|
| 1240 |
+
beta_logits = (distance[:, None, :] - height[:, :, None]) * self.scaler_1[0]
|
| 1241 |
+
elif n_cntxt_layers == 2:
|
| 1242 |
+
beta_logits = (distance[:, None, :] - height[:, :, None]) * self.scaler_2[0]
|
| 1243 |
+
else:
|
| 1244 |
+
beta_logits = (distance[:, None, :] - height[:, :, None]) * self.scaler[0]
|
| 1245 |
+
|
| 1246 |
+
gamma = torch.sigmoid(-beta_logits)
|
| 1247 |
+
ones = torch.ones_like(gamma)
|
| 1248 |
+
|
| 1249 |
+
block_mask_left = cummin(
|
| 1250 |
+
gamma.tril(-1) + ones.triu(0), reverse=True, max_value=1
|
| 1251 |
+
)
|
| 1252 |
+
block_mask_left = block_mask_left - F.pad(
|
| 1253 |
+
block_mask_left[:, :, :-1], (1, 0), value=0
|
| 1254 |
+
)
|
| 1255 |
+
block_mask_left.tril_(0)
|
| 1256 |
+
|
| 1257 |
+
block_mask_right = cummin(
|
| 1258 |
+
gamma.triu(0) + ones.tril(-1), exclusive=True, max_value=1
|
| 1259 |
+
)
|
| 1260 |
+
block_mask_right = block_mask_right - F.pad(
|
| 1261 |
+
block_mask_right[:, :, 1:], (0, 1), value=0
|
| 1262 |
+
)
|
| 1263 |
+
block_mask_right.triu_(0)
|
| 1264 |
+
|
| 1265 |
+
block_p = block_mask_left[:, :, :, None] * block_mask_right[:, :, None, :]
|
| 1266 |
+
block = cumsum(block_mask_left).tril(0) + cumsum(
|
| 1267 |
+
block_mask_right, reverse=True
|
| 1268 |
+
).triu(1)
|
| 1269 |
+
|
| 1270 |
+
return block_p, block
|
| 1271 |
+
|
| 1272 |
+
def compute_head(self, height, n_cntxt_layers=0):
|
| 1273 |
+
"""Estimate head for each constituent."""
|
| 1274 |
+
|
| 1275 |
+
_, length = height.size()
|
| 1276 |
+
if n_cntxt_layers>0:
|
| 1277 |
+
if n_cntxt_layers == 1:
|
| 1278 |
+
head_logits = height * self.scaler_1[1]
|
| 1279 |
+
elif n_cntxt_layers == 2:
|
| 1280 |
+
head_logits = height * self.scaler_2[1]
|
| 1281 |
+
else:
|
| 1282 |
+
head_logits = height * self.scaler[1]
|
| 1283 |
+
index = torch.arange(length, device=height.device)
|
| 1284 |
+
|
| 1285 |
+
mask = (index[:, None, None] <= index[None, None, :]) * (
|
| 1286 |
+
index[None, None, :] <= index[None, :, None]
|
| 1287 |
+
)
|
| 1288 |
+
head_logits = head_logits[:, None, None, :].repeat(1, length, length, 1)
|
| 1289 |
+
head_logits.masked_fill_(~mask[None, :, :, :], -1e9)
|
| 1290 |
+
|
| 1291 |
+
head_p = torch.softmax(head_logits, dim=-1)
|
| 1292 |
+
|
| 1293 |
+
return head_p
|
| 1294 |
+
|
| 1295 |
+
def parse(self, x, embs=None, n_cntxt_layers=0):
|
| 1296 |
+
"""Parse input sentence.
|
| 1297 |
+
|
| 1298 |
+
Args:
|
| 1299 |
+
x: input tokens (required).
|
| 1300 |
+
pos: position for each token (optional).
|
| 1301 |
+
Returns:
|
| 1302 |
+
distance: syntactic distance
|
| 1303 |
+
height: syntactic height
|
| 1304 |
+
"""
|
| 1305 |
+
|
| 1306 |
+
mask = x != self.pad
|
| 1307 |
+
mask_shifted = F.pad(mask[:, 1:], (0, 1), value=0)
|
| 1308 |
+
|
| 1309 |
+
if embs is None:
|
| 1310 |
+
h = self.roberta.embeddings(x)
|
| 1311 |
+
else:
|
| 1312 |
+
h = embs
|
| 1313 |
+
|
| 1314 |
+
if n_cntxt_layers > 0:
|
| 1315 |
+
if n_cntxt_layers == 1:
|
| 1316 |
+
parser_layers = self.parser_layers_1
|
| 1317 |
+
height_ff = self.height_ff_1
|
| 1318 |
+
distance_ff = self.distance_ff_1
|
| 1319 |
+
elif n_cntxt_layers == 2:
|
| 1320 |
+
parser_layers = self.parser_layers_2
|
| 1321 |
+
height_ff = self.height_ff_2
|
| 1322 |
+
distance_ff = self.distance_ff_2
|
| 1323 |
+
for i in range(int(self.config.n_parser_layers/2)):
|
| 1324 |
+
h = h.masked_fill(~mask[:, :, None], 0)
|
| 1325 |
+
h = parser_layers[i](h)
|
| 1326 |
+
|
| 1327 |
+
height = height_ff(h).squeeze(-1)
|
| 1328 |
+
height.masked_fill_(~mask, -1e9)
|
| 1329 |
+
|
| 1330 |
+
distance = distance_ff(h).squeeze(-1)
|
| 1331 |
+
distance.masked_fill_(~mask_shifted, 1e9)
|
| 1332 |
+
|
| 1333 |
+
# Calbrating the distance and height to the same level
|
| 1334 |
+
length = distance.size(1)
|
| 1335 |
+
height_max = height[:, None, :].expand(-1, length, -1)
|
| 1336 |
+
height_max = torch.cummax(
|
| 1337 |
+
height_max.triu(0) - torch.ones_like(height_max).tril(-1) * 1e9, dim=-1
|
| 1338 |
+
)[0].triu(0)
|
| 1339 |
+
|
| 1340 |
+
margin_left = torch.relu(
|
| 1341 |
+
F.pad(distance[:, :-1, None], (0, 0, 1, 0), value=1e9) - height_max
|
| 1342 |
+
)
|
| 1343 |
+
margin_right = torch.relu(distance[:, None, :] - height_max)
|
| 1344 |
+
margin = torch.where(
|
| 1345 |
+
margin_left > margin_right, margin_right, margin_left
|
| 1346 |
+
).triu(0)
|
| 1347 |
+
|
| 1348 |
+
margin_mask = torch.stack([mask_shifted] + [mask] * (length - 1), dim=1)
|
| 1349 |
+
margin.masked_fill_(~margin_mask, 0)
|
| 1350 |
+
margin = margin.max()
|
| 1351 |
+
|
| 1352 |
+
distance = distance - margin
|
| 1353 |
+
else:
|
| 1354 |
+
for i in range(self.config.n_parser_layers):
|
| 1355 |
+
h = h.masked_fill(~mask[:, :, None], 0)
|
| 1356 |
+
h = self.parser_layers[i](h)
|
| 1357 |
+
|
| 1358 |
+
height = self.height_ff(h).squeeze(-1)
|
| 1359 |
+
height.masked_fill_(~mask, -1e9)
|
| 1360 |
+
|
| 1361 |
+
distance = self.distance_ff(h).squeeze(-1)
|
| 1362 |
+
distance.masked_fill_(~mask_shifted, 1e9)
|
| 1363 |
+
|
| 1364 |
+
# Calbrating the distance and height to the same level
|
| 1365 |
+
length = distance.size(1)
|
| 1366 |
+
height_max = height[:, None, :].expand(-1, length, -1)
|
| 1367 |
+
height_max = torch.cummax(
|
| 1368 |
+
height_max.triu(0) - torch.ones_like(height_max).tril(-1) * 1e9, dim=-1
|
| 1369 |
+
)[0].triu(0)
|
| 1370 |
+
|
| 1371 |
+
margin_left = torch.relu(
|
| 1372 |
+
F.pad(distance[:, :-1, None], (0, 0, 1, 0), value=1e9) - height_max
|
| 1373 |
+
)
|
| 1374 |
+
margin_right = torch.relu(distance[:, None, :] - height_max)
|
| 1375 |
+
margin = torch.where(
|
| 1376 |
+
margin_left > margin_right, margin_right, margin_left
|
| 1377 |
+
).triu(0)
|
| 1378 |
+
|
| 1379 |
+
margin_mask = torch.stack([mask_shifted] + [mask] * (length - 1), dim=1)
|
| 1380 |
+
margin.masked_fill_(~margin_mask, 0)
|
| 1381 |
+
margin = margin.max()
|
| 1382 |
+
|
| 1383 |
+
distance = distance - margin
|
| 1384 |
+
|
| 1385 |
+
return distance, height
|
| 1386 |
+
|
| 1387 |
+
def generate_mask(self, x, distance, height, n_cntxt_layers=0):
|
| 1388 |
+
"""Compute head and cibling distribution for each token."""
|
| 1389 |
+
|
| 1390 |
+
bsz, length = x.size()
|
| 1391 |
+
|
| 1392 |
+
eye = torch.eye(length, device=x.device, dtype=torch.bool)
|
| 1393 |
+
eye = eye[None, :, :].expand((bsz, -1, -1))
|
| 1394 |
+
|
| 1395 |
+
block_p, block = self.compute_block(distance, height, n_cntxt_layers=n_cntxt_layers)
|
| 1396 |
+
head_p = self.compute_head(height, n_cntxt_layers=n_cntxt_layers)
|
| 1397 |
+
head = torch.einsum("blij,bijh->blh", block_p, head_p)
|
| 1398 |
+
head = head.masked_fill(eye, 0)
|
| 1399 |
+
child = head.transpose(1, 2)
|
| 1400 |
+
cibling = torch.bmm(head, child).masked_fill(eye, 0)
|
| 1401 |
+
|
| 1402 |
+
rel_list = []
|
| 1403 |
+
if "head" in self.config.relations:
|
| 1404 |
+
rel_list.append(head)
|
| 1405 |
+
if "child" in self.config.relations:
|
| 1406 |
+
rel_list.append(child)
|
| 1407 |
+
if "cibling" in self.config.relations:
|
| 1408 |
+
rel_list.append(cibling)
|
| 1409 |
+
|
| 1410 |
+
rel = torch.stack(rel_list, dim=1)
|
| 1411 |
+
|
| 1412 |
+
if n_cntxt_layers > 0:
|
| 1413 |
+
if n_cntxt_layers == 1:
|
| 1414 |
+
rel_weight = self.rel_weight_1
|
| 1415 |
+
elif n_cntxt_layers == 2:
|
| 1416 |
+
rel_weight = self.rel_weight_2
|
| 1417 |
+
else:
|
| 1418 |
+
rel_weight = self.rel_weight
|
| 1419 |
+
|
| 1420 |
+
dep = torch.einsum("lhr,brij->lbhij", rel_weight, rel)
|
| 1421 |
+
|
| 1422 |
+
if n_cntxt_layers == 1:
|
| 1423 |
+
num_layers = self.cntxt_layers_2.config.num_hidden_layers
|
| 1424 |
+
else:
|
| 1425 |
+
num_layers = self.roberta.config.num_hidden_layers
|
| 1426 |
+
|
| 1427 |
+
att_mask = dep.reshape(
|
| 1428 |
+
num_layers,
|
| 1429 |
+
bsz,
|
| 1430 |
+
self.config.num_attention_heads,
|
| 1431 |
+
length,
|
| 1432 |
+
length,
|
| 1433 |
+
)
|
| 1434 |
+
|
| 1435 |
+
return att_mask, cibling, head, block
|
| 1436 |
+
|
| 1437 |
+
def forward(
|
| 1438 |
+
self,
|
| 1439 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 1440 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 1441 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
| 1442 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1443 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 1444 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1445 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
| 1446 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 1447 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1448 |
+
output_attentions: Optional[bool] = None,
|
| 1449 |
+
output_hidden_states: Optional[bool] = None,
|
| 1450 |
+
return_dict: Optional[bool] = None,
|
| 1451 |
+
) -> Union[Tuple, MaskedLMOutput]:
|
| 1452 |
+
r"""
|
| 1453 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1454 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
| 1455 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
|
| 1456 |
+
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
| 1457 |
+
kwargs (`Dict[str, any]`, optional, defaults to *{}*):
|
| 1458 |
+
Used to hide legacy arguments that have been deprecated.
|
| 1459 |
+
"""
|
| 1460 |
+
return_dict = (
|
| 1461 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
| 1462 |
+
)
|
| 1463 |
+
|
| 1464 |
+
|
| 1465 |
+
if self.config.n_cntxt_layers > 0:
|
| 1466 |
+
cntxt_outputs = self.cntxt_layers(
|
| 1467 |
+
input_ids,
|
| 1468 |
+
attention_mask=attention_mask,
|
| 1469 |
+
token_type_ids=token_type_ids,
|
| 1470 |
+
position_ids=position_ids,
|
| 1471 |
+
head_mask=head_mask,
|
| 1472 |
+
inputs_embeds=inputs_embeds,
|
| 1473 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 1474 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 1475 |
+
output_attentions=output_attentions,
|
| 1476 |
+
output_hidden_states=output_hidden_states,
|
| 1477 |
+
return_dict=return_dict)
|
| 1478 |
+
|
| 1479 |
+
|
| 1480 |
+
if self.config.n_cntxt_layers_2 > 0:
|
| 1481 |
+
distance_1, height_1 = self.parse(input_ids, cntxt_outputs[0], n_cntxt_layers=1)
|
| 1482 |
+
att_mask_1, _, _, _ = self.generate_mask(input_ids, distance_1, height_1, n_cntxt_layers=1)
|
| 1483 |
+
|
| 1484 |
+
cntxt_outputs_2 = self.cntxt_layers_2(
|
| 1485 |
+
input_ids,
|
| 1486 |
+
attention_mask=attention_mask,
|
| 1487 |
+
token_type_ids=token_type_ids,
|
| 1488 |
+
position_ids=position_ids,
|
| 1489 |
+
head_mask=head_mask,
|
| 1490 |
+
inputs_embeds=inputs_embeds,
|
| 1491 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 1492 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 1493 |
+
output_attentions=output_attentions,
|
| 1494 |
+
output_hidden_states=output_hidden_states,
|
| 1495 |
+
return_dict=return_dict,
|
| 1496 |
+
parser_att_mask=att_mask_1)
|
| 1497 |
+
|
| 1498 |
+
sequence_output = cntxt_outputs_2[0]
|
| 1499 |
+
|
| 1500 |
+
distance_2, height_2 = self.parse(input_ids, sequence_output[0], n_cntxt_layers=2)
|
| 1501 |
+
att_mask, _, _, _ = self.generate_mask(input_ids, distance_2, height_2, n_cntxt_layers=2)
|
| 1502 |
+
|
| 1503 |
+
elif self.config.n_cntxt_layers > 0:
|
| 1504 |
+
distance, height = self.parse(input_ids, cntxt_outputs[0])
|
| 1505 |
+
att_mask, _, _, _ = self.generate_mask(input_ids, distance, height)
|
| 1506 |
+
else:
|
| 1507 |
+
distance, height = self.parse(input_ids)
|
| 1508 |
+
att_mask, _, _, _ = self.generate_mask(input_ids, distance, height)
|
| 1509 |
+
|
| 1510 |
+
outputs = self.roberta(
|
| 1511 |
+
input_ids,
|
| 1512 |
+
attention_mask=attention_mask,
|
| 1513 |
+
token_type_ids=token_type_ids,
|
| 1514 |
+
position_ids=position_ids,
|
| 1515 |
+
head_mask=head_mask,
|
| 1516 |
+
inputs_embeds=inputs_embeds,
|
| 1517 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 1518 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 1519 |
+
output_attentions=output_attentions,
|
| 1520 |
+
output_hidden_states=output_hidden_states,
|
| 1521 |
+
return_dict=return_dict,
|
| 1522 |
+
parser_att_mask=att_mask,
|
| 1523 |
+
)
|
| 1524 |
+
sequence_output = outputs[0]
|
| 1525 |
+
prediction_scores = self.lm_head(sequence_output)
|
| 1526 |
+
|
| 1527 |
+
masked_lm_loss = None
|
| 1528 |
+
if labels is not None:
|
| 1529 |
+
loss_fct = CrossEntropyLoss()
|
| 1530 |
+
masked_lm_loss = loss_fct(
|
| 1531 |
+
prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)
|
| 1532 |
+
)
|
| 1533 |
+
|
| 1534 |
+
if not return_dict:
|
| 1535 |
+
output = (prediction_scores,) + outputs[2:]
|
| 1536 |
+
return (
|
| 1537 |
+
((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
| 1538 |
+
)
|
| 1539 |
+
|
| 1540 |
+
return MaskedLMOutput(
|
| 1541 |
+
loss=masked_lm_loss,
|
| 1542 |
+
logits=prediction_scores,
|
| 1543 |
+
hidden_states=outputs.hidden_states,
|
| 1544 |
+
attentions=outputs.attentions,
|
| 1545 |
+
)
|
| 1546 |
+
|
| 1547 |
+
|
| 1548 |
+
class RobertaLMHead(nn.Module):
|
| 1549 |
+
"""Roberta Head for masked language modeling."""
|
| 1550 |
+
|
| 1551 |
+
def __init__(self, config):
|
| 1552 |
+
super().__init__()
|
| 1553 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
| 1554 |
+
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 1555 |
+
|
| 1556 |
+
self.decoder = nn.Linear(config.hidden_size, config.vocab_size)
|
| 1557 |
+
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
| 1558 |
+
self.decoder.bias = self.bias
|
| 1559 |
+
|
| 1560 |
+
def forward(self, features, **kwargs):
|
| 1561 |
+
x = self.dense(features)
|
| 1562 |
+
x = gelu(x)
|
| 1563 |
+
x = self.layer_norm(x)
|
| 1564 |
+
|
| 1565 |
+
# project back to size of vocabulary with bias
|
| 1566 |
+
x = self.decoder(x)
|
| 1567 |
+
|
| 1568 |
+
return x
|
| 1569 |
+
|
| 1570 |
+
def _tie_weights(self):
|
| 1571 |
+
# To tie those two weights if they get disconnected (on TPU or when the bias is resized)
|
| 1572 |
+
self.bias = self.decoder.bias
|
| 1573 |
+
|
| 1574 |
+
|
| 1575 |
+
class StructRobertaForSequenceClassification(RobertaPreTrainedModel):
|
| 1576 |
+
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
| 1577 |
+
|
| 1578 |
+
def __init__(self, config):
|
| 1579 |
+
super().__init__(config)
|
| 1580 |
+
self.num_labels = config.num_labels
|
| 1581 |
+
self.config = config
|
| 1582 |
+
|
| 1583 |
+
if config.n_cntxt_layers > 0:
|
| 1584 |
+
config_cntxt = copy.deepcopy(config)
|
| 1585 |
+
config_cntxt.num_hidden_layers = config.n_cntxt_layers
|
| 1586 |
+
|
| 1587 |
+
self.cntxt_layers = RobertaModel(config_cntxt, add_pooling_layer=False)
|
| 1588 |
+
|
| 1589 |
+
if config.n_cntxt_layers_2 > 0:
|
| 1590 |
+
self.parser_layers_1 = nn.ModuleList(
|
| 1591 |
+
[
|
| 1592 |
+
nn.Sequential(
|
| 1593 |
+
Conv1d(config.hidden_size, config.conv_size),
|
| 1594 |
+
nn.LayerNorm(config.hidden_size, elementwise_affine=False),
|
| 1595 |
+
nn.Tanh(),
|
| 1596 |
+
)
|
| 1597 |
+
for i in range(int(config.n_parser_layers/2))
|
| 1598 |
+
]
|
| 1599 |
+
)
|
| 1600 |
+
|
| 1601 |
+
self.distance_ff_1 = nn.Sequential(
|
| 1602 |
+
Conv1d(config.hidden_size, 2),
|
| 1603 |
+
nn.LayerNorm(config.hidden_size, elementwise_affine=False),
|
| 1604 |
+
nn.Tanh(),
|
| 1605 |
+
nn.Linear(config.hidden_size, 1),
|
| 1606 |
+
)
|
| 1607 |
+
|
| 1608 |
+
self.height_ff_1 = nn.Sequential(
|
| 1609 |
+
nn.Linear(config.hidden_size, config.hidden_size),
|
| 1610 |
+
nn.LayerNorm(config.hidden_size, elementwise_affine=False),
|
| 1611 |
+
nn.Tanh(),
|
| 1612 |
+
nn.Linear(config.hidden_size, 1),
|
| 1613 |
+
)
|
| 1614 |
+
|
| 1615 |
+
n_rel = len(config.relations)
|
| 1616 |
+
self._rel_weight_1 = nn.Parameter(
|
| 1617 |
+
torch.zeros((config.n_cntxt_layers_2, config.num_attention_heads, n_rel))
|
| 1618 |
+
)
|
| 1619 |
+
self._rel_weight_1.data.normal_(0, 0.1)
|
| 1620 |
+
|
| 1621 |
+
self._scaler_1 = nn.Parameter(torch.zeros(2))
|
| 1622 |
+
|
| 1623 |
+
config_cntxt_2 = copy.deepcopy(config)
|
| 1624 |
+
config_cntxt_2.num_hidden_layers = config.n_cntxt_layers_2
|
| 1625 |
+
|
| 1626 |
+
self.cntxt_layers_2 = RobertaModel(config_cntxt_2, add_pooling_layer=False)
|
| 1627 |
+
|
| 1628 |
+
|
| 1629 |
+
self.parser_layers_2 = nn.ModuleList(
|
| 1630 |
+
[
|
| 1631 |
+
nn.Sequential(
|
| 1632 |
+
Conv1d(config.hidden_size, config.conv_size),
|
| 1633 |
+
nn.LayerNorm(config.hidden_size, elementwise_affine=False),
|
| 1634 |
+
nn.Tanh(),
|
| 1635 |
+
)
|
| 1636 |
+
for i in range(int(config.n_parser_layers/2))
|
| 1637 |
+
]
|
| 1638 |
+
)
|
| 1639 |
+
|
| 1640 |
+
self.distance_ff_2 = nn.Sequential(
|
| 1641 |
+
Conv1d(config.hidden_size, 2),
|
| 1642 |
+
nn.LayerNorm(config.hidden_size, elementwise_affine=False),
|
| 1643 |
+
nn.Tanh(),
|
| 1644 |
+
nn.Linear(config.hidden_size, 1),
|
| 1645 |
+
)
|
| 1646 |
+
|
| 1647 |
+
self.height_ff_2 = nn.Sequential(
|
| 1648 |
+
nn.Linear(config.hidden_size, config.hidden_size),
|
| 1649 |
+
nn.LayerNorm(config.hidden_size, elementwise_affine=False),
|
| 1650 |
+
nn.Tanh(),
|
| 1651 |
+
nn.Linear(config.hidden_size, 1),
|
| 1652 |
+
)
|
| 1653 |
+
|
| 1654 |
+
n_rel = len(config.relations)
|
| 1655 |
+
self._rel_weight_2 = nn.Parameter(
|
| 1656 |
+
torch.zeros((config.num_hidden_layers, config.num_attention_heads, n_rel))
|
| 1657 |
+
)
|
| 1658 |
+
self._rel_weight_2.data.normal_(0, 0.1)
|
| 1659 |
+
|
| 1660 |
+
self._scaler_2 = nn.Parameter(torch.zeros(2))
|
| 1661 |
+
|
| 1662 |
+
else:
|
| 1663 |
+
self.parser_layers = nn.ModuleList(
|
| 1664 |
+
[
|
| 1665 |
+
nn.Sequential(
|
| 1666 |
+
Conv1d(config.hidden_size, config.conv_size),
|
| 1667 |
+
nn.LayerNorm(config.hidden_size, elementwise_affine=False),
|
| 1668 |
+
nn.Tanh(),
|
| 1669 |
+
)
|
| 1670 |
+
for i in range(config.n_parser_layers)
|
| 1671 |
+
]
|
| 1672 |
+
)
|
| 1673 |
+
|
| 1674 |
+
self.distance_ff = nn.Sequential(
|
| 1675 |
+
Conv1d(config.hidden_size, 2),
|
| 1676 |
+
nn.LayerNorm(config.hidden_size, elementwise_affine=False),
|
| 1677 |
+
nn.Tanh(),
|
| 1678 |
+
nn.Linear(config.hidden_size, 1),
|
| 1679 |
+
)
|
| 1680 |
+
|
| 1681 |
+
self.height_ff = nn.Sequential(
|
| 1682 |
+
nn.Linear(config.hidden_size, config.hidden_size),
|
| 1683 |
+
nn.LayerNorm(config.hidden_size, elementwise_affine=False),
|
| 1684 |
+
nn.Tanh(),
|
| 1685 |
+
nn.Linear(config.hidden_size, 1),
|
| 1686 |
+
)
|
| 1687 |
+
|
| 1688 |
+
n_rel = len(config.relations)
|
| 1689 |
+
self._rel_weight = nn.Parameter(
|
| 1690 |
+
torch.zeros((config.num_hidden_layers, config.num_attention_heads, n_rel))
|
| 1691 |
+
)
|
| 1692 |
+
self._rel_weight.data.normal_(0, 0.1)
|
| 1693 |
+
|
| 1694 |
+
self._scaler = nn.Parameter(torch.zeros(2))
|
| 1695 |
+
|
| 1696 |
+
self.roberta = RobertaModel(config, add_pooling_layer=False)
|
| 1697 |
+
|
| 1698 |
+
if config.n_cntxt_layers > 0:
|
| 1699 |
+
self.cntxt_layers.embeddings = self.roberta.embeddings
|
| 1700 |
+
if config.n_cntxt_layers_2 > 0:
|
| 1701 |
+
self.cntxt_layers_2.embeddings = self.roberta.embeddings
|
| 1702 |
+
|
| 1703 |
+
|
| 1704 |
+
self.pad = config.pad_token_id
|
| 1705 |
+
self.classifier = RobertaClassificationHead(config)
|
| 1706 |
+
|
| 1707 |
+
# Initialize weights and apply final processing
|
| 1708 |
+
self.post_init()
|
| 1709 |
+
|
| 1710 |
+
|
| 1711 |
+
@property
|
| 1712 |
+
def scaler(self):
|
| 1713 |
+
return self._scaler.exp()
|
| 1714 |
+
|
| 1715 |
+
@property
|
| 1716 |
+
def scaler_1(self):
|
| 1717 |
+
return self._scaler_1.exp()
|
| 1718 |
+
|
| 1719 |
+
@property
|
| 1720 |
+
def scaler_2(self):
|
| 1721 |
+
return self._scaler_2.exp()
|
| 1722 |
+
|
| 1723 |
+
@property
|
| 1724 |
+
def rel_weight(self):
|
| 1725 |
+
if self.config.weight_act == "sigmoid":
|
| 1726 |
+
return torch.sigmoid(self._rel_weight)
|
| 1727 |
+
elif self.config.weight_act == "softmax":
|
| 1728 |
+
return torch.softmax(self._rel_weight, dim=-1)
|
| 1729 |
+
|
| 1730 |
+
@property
|
| 1731 |
+
def rel_weight_1(self):
|
| 1732 |
+
if self.config.weight_act == "sigmoid":
|
| 1733 |
+
return torch.sigmoid(self._rel_weight_1)
|
| 1734 |
+
elif self.config.weight_act == "softmax":
|
| 1735 |
+
return torch.softmax(self._rel_weight_1, dim=-1)
|
| 1736 |
+
|
| 1737 |
+
|
| 1738 |
+
@property
|
| 1739 |
+
def rel_weight_2(self):
|
| 1740 |
+
if self.config.weight_act == "sigmoid":
|
| 1741 |
+
return torch.sigmoid(self._rel_weight_2)
|
| 1742 |
+
elif self.config.weight_act == "softmax":
|
| 1743 |
+
return torch.softmax(self._rel_weight_2, dim=-1)
|
| 1744 |
+
|
| 1745 |
+
|
| 1746 |
+
def compute_block(self, distance, height, n_cntxt_layers=0):
|
| 1747 |
+
"""Compute constituents from distance and height."""
|
| 1748 |
+
|
| 1749 |
+
if n_cntxt_layers>0:
|
| 1750 |
+
if n_cntxt_layers == 1:
|
| 1751 |
+
beta_logits = (distance[:, None, :] - height[:, :, None]) * self.scaler_1[0]
|
| 1752 |
+
elif n_cntxt_layers == 2:
|
| 1753 |
+
beta_logits = (distance[:, None, :] - height[:, :, None]) * self.scaler_2[0]
|
| 1754 |
+
else:
|
| 1755 |
+
beta_logits = (distance[:, None, :] - height[:, :, None]) * self.scaler[0]
|
| 1756 |
+
|
| 1757 |
+
gamma = torch.sigmoid(-beta_logits)
|
| 1758 |
+
ones = torch.ones_like(gamma)
|
| 1759 |
+
|
| 1760 |
+
block_mask_left = cummin(
|
| 1761 |
+
gamma.tril(-1) + ones.triu(0), reverse=True, max_value=1
|
| 1762 |
+
)
|
| 1763 |
+
block_mask_left = block_mask_left - F.pad(
|
| 1764 |
+
block_mask_left[:, :, :-1], (1, 0), value=0
|
| 1765 |
+
)
|
| 1766 |
+
block_mask_left.tril_(0)
|
| 1767 |
+
|
| 1768 |
+
block_mask_right = cummin(
|
| 1769 |
+
gamma.triu(0) + ones.tril(-1), exclusive=True, max_value=1
|
| 1770 |
+
)
|
| 1771 |
+
block_mask_right = block_mask_right - F.pad(
|
| 1772 |
+
block_mask_right[:, :, 1:], (0, 1), value=0
|
| 1773 |
+
)
|
| 1774 |
+
block_mask_right.triu_(0)
|
| 1775 |
+
|
| 1776 |
+
block_p = block_mask_left[:, :, :, None] * block_mask_right[:, :, None, :]
|
| 1777 |
+
block = cumsum(block_mask_left).tril(0) + cumsum(
|
| 1778 |
+
block_mask_right, reverse=True
|
| 1779 |
+
).triu(1)
|
| 1780 |
+
|
| 1781 |
+
return block_p, block
|
| 1782 |
+
|
| 1783 |
+
def compute_head(self, height, n_cntxt_layers=0):
|
| 1784 |
+
"""Estimate head for each constituent."""
|
| 1785 |
+
|
| 1786 |
+
_, length = height.size()
|
| 1787 |
+
if n_cntxt_layers>0:
|
| 1788 |
+
if n_cntxt_layers == 1:
|
| 1789 |
+
head_logits = height * self.scaler_1[1]
|
| 1790 |
+
elif n_cntxt_layers == 2:
|
| 1791 |
+
head_logits = height * self.scaler_2[1]
|
| 1792 |
+
else:
|
| 1793 |
+
head_logits = height * self.scaler[1]
|
| 1794 |
+
index = torch.arange(length, device=height.device)
|
| 1795 |
+
|
| 1796 |
+
mask = (index[:, None, None] <= index[None, None, :]) * (
|
| 1797 |
+
index[None, None, :] <= index[None, :, None]
|
| 1798 |
+
)
|
| 1799 |
+
head_logits = head_logits[:, None, None, :].repeat(1, length, length, 1)
|
| 1800 |
+
head_logits.masked_fill_(~mask[None, :, :, :], -1e9)
|
| 1801 |
+
|
| 1802 |
+
head_p = torch.softmax(head_logits, dim=-1)
|
| 1803 |
+
|
| 1804 |
+
return head_p
|
| 1805 |
+
|
| 1806 |
+
def parse(self, x, embs=None, n_cntxt_layers=0):
|
| 1807 |
+
"""Parse input sentence.
|
| 1808 |
+
|
| 1809 |
+
Args:
|
| 1810 |
+
x: input tokens (required).
|
| 1811 |
+
pos: position for each token (optional).
|
| 1812 |
+
Returns:
|
| 1813 |
+
distance: syntactic distance
|
| 1814 |
+
height: syntactic height
|
| 1815 |
+
"""
|
| 1816 |
+
|
| 1817 |
+
mask = x != self.pad
|
| 1818 |
+
mask_shifted = F.pad(mask[:, 1:], (0, 1), value=0)
|
| 1819 |
+
|
| 1820 |
+
if embs is None:
|
| 1821 |
+
h = self.roberta.embeddings(x)
|
| 1822 |
+
else:
|
| 1823 |
+
h = embs
|
| 1824 |
+
|
| 1825 |
+
if n_cntxt_layers > 0:
|
| 1826 |
+
if n_cntxt_layers == 1:
|
| 1827 |
+
parser_layers = self.parser_layers_1
|
| 1828 |
+
height_ff = self.height_ff_1
|
| 1829 |
+
distance_ff = self.distance_ff_1
|
| 1830 |
+
elif n_cntxt_layers == 2:
|
| 1831 |
+
parser_layers = self.parser_layers_2
|
| 1832 |
+
height_ff = self.height_ff_2
|
| 1833 |
+
distance_ff = self.distance_ff_2
|
| 1834 |
+
for i in range(int(self.config.n_parser_layers/2)):
|
| 1835 |
+
h = h.masked_fill(~mask[:, :, None], 0)
|
| 1836 |
+
h = parser_layers[i](h)
|
| 1837 |
+
|
| 1838 |
+
height = height_ff(h).squeeze(-1)
|
| 1839 |
+
height.masked_fill_(~mask, -1e9)
|
| 1840 |
+
|
| 1841 |
+
distance = distance_ff(h).squeeze(-1)
|
| 1842 |
+
distance.masked_fill_(~mask_shifted, 1e9)
|
| 1843 |
+
|
| 1844 |
+
# Calbrating the distance and height to the same level
|
| 1845 |
+
length = distance.size(1)
|
| 1846 |
+
height_max = height[:, None, :].expand(-1, length, -1)
|
| 1847 |
+
height_max = torch.cummax(
|
| 1848 |
+
height_max.triu(0) - torch.ones_like(height_max).tril(-1) * 1e9, dim=-1
|
| 1849 |
+
)[0].triu(0)
|
| 1850 |
+
|
| 1851 |
+
margin_left = torch.relu(
|
| 1852 |
+
F.pad(distance[:, :-1, None], (0, 0, 1, 0), value=1e9) - height_max
|
| 1853 |
+
)
|
| 1854 |
+
margin_right = torch.relu(distance[:, None, :] - height_max)
|
| 1855 |
+
margin = torch.where(
|
| 1856 |
+
margin_left > margin_right, margin_right, margin_left
|
| 1857 |
+
).triu(0)
|
| 1858 |
+
|
| 1859 |
+
margin_mask = torch.stack([mask_shifted] + [mask] * (length - 1), dim=1)
|
| 1860 |
+
margin.masked_fill_(~margin_mask, 0)
|
| 1861 |
+
margin = margin.max()
|
| 1862 |
+
|
| 1863 |
+
distance = distance - margin
|
| 1864 |
+
else:
|
| 1865 |
+
for i in range(self.config.n_parser_layers):
|
| 1866 |
+
h = h.masked_fill(~mask[:, :, None], 0)
|
| 1867 |
+
h = self.parser_layers[i](h)
|
| 1868 |
+
|
| 1869 |
+
height = self.height_ff(h).squeeze(-1)
|
| 1870 |
+
height.masked_fill_(~mask, -1e9)
|
| 1871 |
+
|
| 1872 |
+
distance = self.distance_ff(h).squeeze(-1)
|
| 1873 |
+
distance.masked_fill_(~mask_shifted, 1e9)
|
| 1874 |
+
|
| 1875 |
+
# Calbrating the distance and height to the same level
|
| 1876 |
+
length = distance.size(1)
|
| 1877 |
+
height_max = height[:, None, :].expand(-1, length, -1)
|
| 1878 |
+
height_max = torch.cummax(
|
| 1879 |
+
height_max.triu(0) - torch.ones_like(height_max).tril(-1) * 1e9, dim=-1
|
| 1880 |
+
)[0].triu(0)
|
| 1881 |
+
|
| 1882 |
+
margin_left = torch.relu(
|
| 1883 |
+
F.pad(distance[:, :-1, None], (0, 0, 1, 0), value=1e9) - height_max
|
| 1884 |
+
)
|
| 1885 |
+
margin_right = torch.relu(distance[:, None, :] - height_max)
|
| 1886 |
+
margin = torch.where(
|
| 1887 |
+
margin_left > margin_right, margin_right, margin_left
|
| 1888 |
+
).triu(0)
|
| 1889 |
+
|
| 1890 |
+
margin_mask = torch.stack([mask_shifted] + [mask] * (length - 1), dim=1)
|
| 1891 |
+
margin.masked_fill_(~margin_mask, 0)
|
| 1892 |
+
margin = margin.max()
|
| 1893 |
+
|
| 1894 |
+
distance = distance - margin
|
| 1895 |
+
|
| 1896 |
+
return distance, height
|
| 1897 |
+
|
| 1898 |
+
def generate_mask(self, x, distance, height, n_cntxt_layers=0):
|
| 1899 |
+
"""Compute head and cibling distribution for each token."""
|
| 1900 |
+
|
| 1901 |
+
bsz, length = x.size()
|
| 1902 |
+
|
| 1903 |
+
eye = torch.eye(length, device=x.device, dtype=torch.bool)
|
| 1904 |
+
eye = eye[None, :, :].expand((bsz, -1, -1))
|
| 1905 |
+
|
| 1906 |
+
block_p, block = self.compute_block(distance, height, n_cntxt_layers=n_cntxt_layers)
|
| 1907 |
+
head_p = self.compute_head(height, n_cntxt_layers=n_cntxt_layers)
|
| 1908 |
+
head = torch.einsum("blij,bijh->blh", block_p, head_p)
|
| 1909 |
+
head = head.masked_fill(eye, 0)
|
| 1910 |
+
child = head.transpose(1, 2)
|
| 1911 |
+
cibling = torch.bmm(head, child).masked_fill(eye, 0)
|
| 1912 |
+
|
| 1913 |
+
rel_list = []
|
| 1914 |
+
if "head" in self.config.relations:
|
| 1915 |
+
rel_list.append(head)
|
| 1916 |
+
if "child" in self.config.relations:
|
| 1917 |
+
rel_list.append(child)
|
| 1918 |
+
if "cibling" in self.config.relations:
|
| 1919 |
+
rel_list.append(cibling)
|
| 1920 |
+
|
| 1921 |
+
rel = torch.stack(rel_list, dim=1)
|
| 1922 |
+
|
| 1923 |
+
if n_cntxt_layers > 0:
|
| 1924 |
+
if n_cntxt_layers == 1:
|
| 1925 |
+
rel_weight = self.rel_weight_1
|
| 1926 |
+
elif n_cntxt_layers == 2:
|
| 1927 |
+
rel_weight = self.rel_weight_2
|
| 1928 |
+
else:
|
| 1929 |
+
rel_weight = self.rel_weight
|
| 1930 |
+
|
| 1931 |
+
dep = torch.einsum("lhr,brij->lbhij", rel_weight, rel)
|
| 1932 |
+
|
| 1933 |
+
if n_cntxt_layers == 1:
|
| 1934 |
+
num_layers = self.cntxt_layers_2.config.num_hidden_layers
|
| 1935 |
+
else:
|
| 1936 |
+
num_layers = self.roberta.config.num_hidden_layers
|
| 1937 |
+
|
| 1938 |
+
att_mask = dep.reshape(
|
| 1939 |
+
num_layers,
|
| 1940 |
+
bsz,
|
| 1941 |
+
self.config.num_attention_heads,
|
| 1942 |
+
length,
|
| 1943 |
+
length,
|
| 1944 |
+
)
|
| 1945 |
+
|
| 1946 |
+
return att_mask, cibling, head, block
|
| 1947 |
+
|
| 1948 |
+
def forward(
|
| 1949 |
+
self,
|
| 1950 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 1951 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 1952 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
| 1953 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1954 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 1955 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1956 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1957 |
+
output_attentions: Optional[bool] = None,
|
| 1958 |
+
output_hidden_states: Optional[bool] = None,
|
| 1959 |
+
return_dict: Optional[bool] = None,
|
| 1960 |
+
) -> Union[Tuple, SequenceClassifierOutput]:
|
| 1961 |
+
r"""
|
| 1962 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1963 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
| 1964 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
| 1965 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 1966 |
+
"""
|
| 1967 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1968 |
+
|
| 1969 |
+
if self.config.n_cntxt_layers > 0:
|
| 1970 |
+
cntxt_outputs = self.cntxt_layers(
|
| 1971 |
+
input_ids,
|
| 1972 |
+
attention_mask=attention_mask,
|
| 1973 |
+
token_type_ids=token_type_ids,
|
| 1974 |
+
position_ids=position_ids,
|
| 1975 |
+
head_mask=head_mask,
|
| 1976 |
+
inputs_embeds=inputs_embeds,
|
| 1977 |
+
output_attentions=output_attentions,
|
| 1978 |
+
output_hidden_states=output_hidden_states,
|
| 1979 |
+
return_dict=return_dict)
|
| 1980 |
+
|
| 1981 |
+
|
| 1982 |
+
if self.config.n_cntxt_layers_2 > 0:
|
| 1983 |
+
distance_1, height_1 = self.parse(input_ids, cntxt_outputs[0], n_cntxt_layers=1)
|
| 1984 |
+
att_mask_1, _, _, _ = self.generate_mask(input_ids, distance_1, height_1, n_cntxt_layers=1)
|
| 1985 |
+
|
| 1986 |
+
cntxt_outputs_2 = self.cntxt_layers_2(
|
| 1987 |
+
input_ids,
|
| 1988 |
+
attention_mask=attention_mask,
|
| 1989 |
+
token_type_ids=token_type_ids,
|
| 1990 |
+
position_ids=position_ids,
|
| 1991 |
+
head_mask=head_mask,
|
| 1992 |
+
inputs_embeds=inputs_embeds,
|
| 1993 |
+
output_attentions=output_attentions,
|
| 1994 |
+
output_hidden_states=output_hidden_states,
|
| 1995 |
+
return_dict=return_dict,
|
| 1996 |
+
parser_att_mask=att_mask_1)
|
| 1997 |
+
|
| 1998 |
+
sequence_output = cntxt_outputs_2[0]
|
| 1999 |
+
|
| 2000 |
+
distance_2, height_2 = self.parse(input_ids, sequence_output[0], n_cntxt_layers=2)
|
| 2001 |
+
att_mask, _, _, _ = self.generate_mask(input_ids, distance_2, height_2, n_cntxt_layers=2)
|
| 2002 |
+
|
| 2003 |
+
elif self.config.n_cntxt_layers > 0:
|
| 2004 |
+
distance, height = self.parse(input_ids, cntxt_outputs[0])
|
| 2005 |
+
att_mask, _, _, _ = self.generate_mask(input_ids, distance, height)
|
| 2006 |
+
else:
|
| 2007 |
+
distance, height = self.parse(input_ids)
|
| 2008 |
+
att_mask, _, _, _ = self.generate_mask(input_ids, distance, height)
|
| 2009 |
+
|
| 2010 |
+
outputs = self.roberta(
|
| 2011 |
+
input_ids,
|
| 2012 |
+
attention_mask=attention_mask,
|
| 2013 |
+
token_type_ids=token_type_ids,
|
| 2014 |
+
position_ids=position_ids,
|
| 2015 |
+
head_mask=head_mask,
|
| 2016 |
+
inputs_embeds=inputs_embeds,
|
| 2017 |
+
output_attentions=output_attentions,
|
| 2018 |
+
output_hidden_states=output_hidden_states,
|
| 2019 |
+
return_dict=return_dict,
|
| 2020 |
+
parser_att_mask=att_mask,
|
| 2021 |
+
)
|
| 2022 |
+
sequence_output = outputs[0]
|
| 2023 |
+
logits = self.classifier(sequence_output)
|
| 2024 |
+
|
| 2025 |
+
loss = None
|
| 2026 |
+
if labels is not None:
|
| 2027 |
+
if self.config.problem_type is None:
|
| 2028 |
+
if self.num_labels == 1:
|
| 2029 |
+
self.config.problem_type = "regression"
|
| 2030 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
| 2031 |
+
self.config.problem_type = "single_label_classification"
|
| 2032 |
+
else:
|
| 2033 |
+
self.config.problem_type = "multi_label_classification"
|
| 2034 |
+
|
| 2035 |
+
if self.config.problem_type == "regression":
|
| 2036 |
+
loss_fct = MSELoss()
|
| 2037 |
+
if self.num_labels == 1:
|
| 2038 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
| 2039 |
+
else:
|
| 2040 |
+
loss = loss_fct(logits, labels)
|
| 2041 |
+
elif self.config.problem_type == "single_label_classification":
|
| 2042 |
+
loss_fct = CrossEntropyLoss()
|
| 2043 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
| 2044 |
+
elif self.config.problem_type == "multi_label_classification":
|
| 2045 |
+
loss_fct = BCEWithLogitsLoss()
|
| 2046 |
+
loss = loss_fct(logits, labels)
|
| 2047 |
+
|
| 2048 |
+
if not return_dict:
|
| 2049 |
+
output = (logits,) + outputs[2:]
|
| 2050 |
+
return ((loss,) + output) if loss is not None else output
|
| 2051 |
+
|
| 2052 |
+
return SequenceClassifierOutput(
|
| 2053 |
+
loss=loss,
|
| 2054 |
+
logits=logits,
|
| 2055 |
+
hidden_states=outputs.hidden_states,
|
| 2056 |
+
attentions=outputs.attentions,
|
| 2057 |
+
)
|
| 2058 |
+
|
| 2059 |
+
|
| 2060 |
+
class RobertaClassificationHead(nn.Module):
|
| 2061 |
+
"""Head for sentence-level classification tasks."""
|
| 2062 |
+
|
| 2063 |
+
def __init__(self, config):
|
| 2064 |
+
super().__init__()
|
| 2065 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
| 2066 |
+
classifier_dropout = (
|
| 2067 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
| 2068 |
+
)
|
| 2069 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
| 2070 |
+
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
|
| 2071 |
+
|
| 2072 |
+
def forward(self, features, **kwargs):
|
| 2073 |
+
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
|
| 2074 |
+
x = self.dropout(x)
|
| 2075 |
+
x = self.dense(x)
|
| 2076 |
+
x = torch.tanh(x)
|
| 2077 |
+
x = self.dropout(x)
|
| 2078 |
+
x = self.out_proj(x)
|
| 2079 |
+
return x
|
| 2080 |
+
|
| 2081 |
+
|
| 2082 |
+
def create_position_ids_from_input_ids(
|
| 2083 |
+
input_ids, padding_idx, past_key_values_length=0
|
| 2084 |
+
):
|
| 2085 |
+
"""
|
| 2086 |
+
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
|
| 2087 |
+
are ignored. This is modified from fairseq's `utils.make_positions`.
|
| 2088 |
+
|
| 2089 |
+
Args:
|
| 2090 |
+
x: torch.Tensor x:
|
| 2091 |
+
|
| 2092 |
+
Returns: torch.Tensor
|
| 2093 |
+
"""
|
| 2094 |
+
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
|
| 2095 |
+
mask = input_ids.ne(padding_idx).int()
|
| 2096 |
+
incremental_indices = (
|
| 2097 |
+
torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length
|
| 2098 |
+
) * mask
|
| 2099 |
+
return incremental_indices.long() + padding_idx
|
| 2100 |
+
|
| 2101 |
+
|
| 2102 |
+
def cumprod(x, reverse=False, exclusive=False):
|
| 2103 |
+
"""cumulative product."""
|
| 2104 |
+
if reverse:
|
| 2105 |
+
x = x.flip([-1])
|
| 2106 |
+
|
| 2107 |
+
if exclusive:
|
| 2108 |
+
x = F.pad(x[:, :, :-1], (1, 0), value=1)
|
| 2109 |
+
|
| 2110 |
+
cx = x.cumprod(-1)
|
| 2111 |
+
|
| 2112 |
+
if reverse:
|
| 2113 |
+
cx = cx.flip([-1])
|
| 2114 |
+
return cx
|
| 2115 |
+
|
| 2116 |
+
|
| 2117 |
+
def cumsum(x, reverse=False, exclusive=False):
|
| 2118 |
+
"""cumulative sum."""
|
| 2119 |
+
bsz, _, length = x.size()
|
| 2120 |
+
device = x.device
|
| 2121 |
+
if reverse:
|
| 2122 |
+
if exclusive:
|
| 2123 |
+
w = torch.ones([bsz, length, length], device=device).tril(-1)
|
| 2124 |
+
else:
|
| 2125 |
+
w = torch.ones([bsz, length, length], device=device).tril(0)
|
| 2126 |
+
cx = torch.bmm(x, w)
|
| 2127 |
+
else:
|
| 2128 |
+
if exclusive:
|
| 2129 |
+
w = torch.ones([bsz, length, length], device=device).triu(1)
|
| 2130 |
+
else:
|
| 2131 |
+
w = torch.ones([bsz, length, length], device=device).triu(0)
|
| 2132 |
+
cx = torch.bmm(x, w)
|
| 2133 |
+
return cx
|
| 2134 |
+
|
| 2135 |
+
|
| 2136 |
+
def cummin(x, reverse=False, exclusive=False, max_value=1e9):
|
| 2137 |
+
"""cumulative min."""
|
| 2138 |
+
if reverse:
|
| 2139 |
+
if exclusive:
|
| 2140 |
+
x = F.pad(x[:, :, 1:], (0, 1), value=max_value)
|
| 2141 |
+
x = x.flip([-1]).cummin(-1)[0].flip([-1])
|
| 2142 |
+
else:
|
| 2143 |
+
if exclusive:
|
| 2144 |
+
x = F.pad(x[:, :, :-1], (1, 0), value=max_value)
|
| 2145 |
+
x = x.cummin(-1)[0]
|
| 2146 |
+
return x
|
finetune/control_raising_control/checkpoint-400/optimizer.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:276b4418ede949bd6f8dd84d85070e2d14eda7ab99bb967a5fb4a15d83387a47
|
| 3 |
+
size 1154109317
|
finetune/control_raising_control/checkpoint-400/pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1da9b8cae6ed0f931ee814194e2fb0860595439291dbf891b54455f0e5edbcb9
|
| 3 |
+
size 577069633
|
finetune/control_raising_control/checkpoint-400/rng_state.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1a5299232550db0e37485cb678803cf54c345c834976d36e81571c3d16c29cf7
|
| 3 |
+
size 14503
|
finetune/control_raising_control/checkpoint-400/scheduler.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0c2403f14641b3caeb1b4d17bf70ec776358494ec9059cbe53a4c9c5a18c4c15
|
| 3 |
+
size 623
|
finetune/control_raising_control/checkpoint-400/special_tokens_map.json
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": "<s>",
|
| 3 |
+
"cls_token": "<s>",
|
| 4 |
+
"eos_token": "</s>",
|
| 5 |
+
"mask_token": {
|
| 6 |
+
"content": "<mask>",
|
| 7 |
+
"lstrip": true,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false
|
| 11 |
+
},
|
| 12 |
+
"pad_token": "<pad>",
|
| 13 |
+
"sep_token": "</s>",
|
| 14 |
+
"unk_token": "<unk>"
|
| 15 |
+
}
|
finetune/control_raising_control/checkpoint-400/tokenizer_config.json
ADDED
|
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_prefix_space": false,
|
| 3 |
+
"bos_token": {
|
| 4 |
+
"__type": "AddedToken",
|
| 5 |
+
"content": "<s>",
|
| 6 |
+
"lstrip": false,
|
| 7 |
+
"normalized": true,
|
| 8 |
+
"rstrip": false,
|
| 9 |
+
"single_word": false
|
| 10 |
+
},
|
| 11 |
+
"cls_token": {
|
| 12 |
+
"__type": "AddedToken",
|
| 13 |
+
"content": "<s>",
|
| 14 |
+
"lstrip": false,
|
| 15 |
+
"normalized": true,
|
| 16 |
+
"rstrip": false,
|
| 17 |
+
"single_word": false
|
| 18 |
+
},
|
| 19 |
+
"eos_token": {
|
| 20 |
+
"__type": "AddedToken",
|
| 21 |
+
"content": "</s>",
|
| 22 |
+
"lstrip": false,
|
| 23 |
+
"normalized": true,
|
| 24 |
+
"rstrip": false,
|
| 25 |
+
"single_word": false
|
| 26 |
+
},
|
| 27 |
+
"errors": "replace",
|
| 28 |
+
"mask_token": {
|
| 29 |
+
"__type": "AddedToken",
|
| 30 |
+
"content": "<mask>",
|
| 31 |
+
"lstrip": true,
|
| 32 |
+
"normalized": false,
|
| 33 |
+
"rstrip": false,
|
| 34 |
+
"single_word": false
|
| 35 |
+
},
|
| 36 |
+
"model_max_length": 512,
|
| 37 |
+
"name_or_path": "final_models/structroberta_sx2_final",
|
| 38 |
+
"pad_token": {
|
| 39 |
+
"__type": "AddedToken",
|
| 40 |
+
"content": "<pad>",
|
| 41 |
+
"lstrip": false,
|
| 42 |
+
"normalized": true,
|
| 43 |
+
"rstrip": false,
|
| 44 |
+
"single_word": false
|
| 45 |
+
},
|
| 46 |
+
"sep_token": {
|
| 47 |
+
"__type": "AddedToken",
|
| 48 |
+
"content": "</s>",
|
| 49 |
+
"lstrip": false,
|
| 50 |
+
"normalized": true,
|
| 51 |
+
"rstrip": false,
|
| 52 |
+
"single_word": false
|
| 53 |
+
},
|
| 54 |
+
"special_tokens_map_file": null,
|
| 55 |
+
"tokenizer_class": "RobertaTokenizer",
|
| 56 |
+
"trim_offsets": true,
|
| 57 |
+
"unk_token": {
|
| 58 |
+
"__type": "AddedToken",
|
| 59 |
+
"content": "<unk>",
|
| 60 |
+
"lstrip": false,
|
| 61 |
+
"normalized": true,
|
| 62 |
+
"rstrip": false,
|
| 63 |
+
"single_word": false
|
| 64 |
+
}
|
| 65 |
+
}
|
finetune/control_raising_control/checkpoint-400/trainer_state.json
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_metric": 0.8866091446429785,
|
| 3 |
+
"best_model_checkpoint": "final_models/structroberta_sx2_final/finetune/control_raising_control/checkpoint-400",
|
| 4 |
+
"epoch": 7.2727272727272725,
|
| 5 |
+
"global_step": 400,
|
| 6 |
+
"is_hyper_param_search": false,
|
| 7 |
+
"is_local_process_zero": true,
|
| 8 |
+
"is_world_process_zero": true,
|
| 9 |
+
"log_history": [
|
| 10 |
+
{
|
| 11 |
+
"epoch": 7.27,
|
| 12 |
+
"eval_accuracy": 0.8752802014350891,
|
| 13 |
+
"eval_f1": 0.8866091446429785,
|
| 14 |
+
"eval_loss": 0.801540732383728,
|
| 15 |
+
"eval_mcc": 0.7701394030930233,
|
| 16 |
+
"eval_runtime": 28.1112,
|
| 17 |
+
"eval_samples_per_second": 476.038,
|
| 18 |
+
"eval_steps_per_second": 59.514,
|
| 19 |
+
"step": 400
|
| 20 |
+
}
|
| 21 |
+
],
|
| 22 |
+
"max_steps": 550,
|
| 23 |
+
"num_train_epochs": 10,
|
| 24 |
+
"total_flos": 4377752676449280.0,
|
| 25 |
+
"trial_name": null,
|
| 26 |
+
"trial_params": null
|
| 27 |
+
}
|