"""PyTorch OpenAI GPT-2 model modified with MultiQuery attention""" from typing import Optional, Tuple, Union import math import torch import torch.utils.checkpoint from torch import nn from transformers.activations import ACT2FN from transformers.modeling_outputs import ( BaseModelOutputWithPastAndCrossAttentions, ) from transformers.models.gpt2.modeling_gpt2 import GPT2Model, GPT2Block, GPT2PreTrainedModel, GPT2LMHeadModel from transformers.utils import logging from configuration_gpt2_mq import GPT2CustomConfig, MULTI_QUERY logger = logging.get_logger(__name__) def make_causal_mask( input_ids_shape: torch.Size, device: torch.device, past_key_values_length: int ) -> torch.BoolTensor: """ Make causal mask used for self-attention. """ batch_size, target_length = input_ids_shape mask = torch.empty((target_length, target_length + past_key_values_length), dtype=torch.bool, device=device) # ONNX doesn't support `torch.Tensor.triu` properly, thus we use this workaround seq_ids = torch.arange(target_length, device=device) mask[:, past_key_values_length:] = seq_ids[:, None] < seq_ids[None, :] if past_key_values_length > 0: mask[:, :past_key_values_length] = False expanded_mask = mask[None, :, :].expand(batch_size, target_length, target_length + past_key_values_length) return expanded_mask def expand_mask(mask: torch.Tensor, tgt_length: int) -> torch.BoolTensor: """ Expands attention_mask from `[batch_size, src_length]` to `[batch_size, 1, tgt_length, src_length]`. """ batch_size, src_length = mask.shape tgt_length = tgt_length if tgt_length is not None else src_length expanded_mask = ~(mask[:, None, :].to(torch.bool)) return expanded_mask.expand(batch_size, tgt_length, src_length) def prepare_attn_mask( attention_mask: torch.Tensor, input_shape: Tuple[int, int], past_key_values_length: int ) -> torch.BoolTensor: # create causal mask # [batch_size, seq_length] -> [batch_size, tgt_length, src_length] combined_attention_mask = None device = attention_mask.device _, src_length = input_shape if src_length > 1: combined_attention_mask = make_causal_mask( input_shape, device=device, past_key_values_length=past_key_values_length ) # [batch_size, seq_length] -> [batch_size, tgt_length, src_length] expanded_attn_mask = expand_mask(attention_mask, tgt_length=src_length) combined_attention_mask = ( expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask | combined_attention_mask ) return combined_attention_mask @torch.jit.script def gelu_forward(x: torch.Tensor) -> torch.Tensor: """ Custom bias GELU function. Adapted from Megatron-DeepSpeed code. Here we use a simple implementation (inference) to make the model jitable. Args: x (`torch.tensor`, *required*): input hidden states """ return x * 0.5 * (1.0 + torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x))) class LinearGPT2MLP(nn.Module): def __init__(self, intermediate_size, config): super().__init__() embed_dim = config.hidden_size self.c_fc = nn.Linear(embed_dim, intermediate_size) self.c_proj = nn.Linear(intermediate_size, embed_dim) self.act = ACT2FN[config.activation_function] if "gelu" not in config.activation_function else gelu_forward self.dropout = nn.Dropout(config.resid_pdrop) def forward(self, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor: hidden_states = self.c_fc(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.c_proj(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states class GPT2MQAttention(nn.Module): def __init__(self, config, is_cross_attention=False, layer_idx=None): super().__init__() assert config.attention_head_type == MULTI_QUERY self.embed_dim = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.embed_dim // self.num_heads self.split_size = self.embed_dim if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"`embed_dim` must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" f" {self.num_heads})." ) self.scale_attn_weights = config.scale_attn_weights if is_cross_attention: raise NotImplementedError("Cross-attention not implemented for MQA") self.is_cross_attention = is_cross_attention # Layer-wise attention scaling, reordering, and upcasting self.scale_attn_by_inverse_layer_idx = config.scale_attn_by_inverse_layer_idx self.layer_idx = layer_idx self.reorder_and_upcast_attn = config.reorder_and_upcast_attn if self.is_cross_attention: raise NotImplementedError("Cross-attention not implemented for MQA") else: # self.c_attn = Conv1D(3 * self.embed_dim, self.embed_dim) self.q_attn = nn.Linear(self.embed_dim, self.embed_dim) # Keys and values are shared across heads self.kv_attn = nn.Linear(self.embed_dim, 2 * self.head_dim) self.c_proj = nn.Linear(self.embed_dim, self.embed_dim) self.attn_dropout = nn.Dropout(config.attn_pdrop) self.resid_dropout = nn.Dropout(config.resid_pdrop) self.pruned_heads = set() self.inv_norm_factor = 1.0 / math.sqrt(self.head_dim) def _attn(self, query, key, value, attention_mask=None, head_mask=None): # query: (b, num_heads * sq, head_dim) # key: (b, head_dim, sk) # value: (b, sk, head_dim) batch_size = query.size(0) query_length = query.size(1) // self.num_heads key_length = key.size(2) # (b, num_heads * sq, head_dim) x (b, head_dim, sk) -> (b, num_heads * sq, sk) if self.scale_attn_weights: query *= self.inv_norm_factor attn_weights = torch.bmm(query, key) # -> (b, num_heads, sq, sk) attn_weights = attn_weights.view(batch_size, self.num_heads, query_length, key_length) # Layer-wise attention scaling if self.scale_attn_by_inverse_layer_idx: attn_weights = attn_weights / float(self.layer_idx + 1) if attention_mask is not None: attn_weights = attn_weights.masked_fill_(attention_mask, torch.finfo(attn_weights.dtype).min) attn_weights = nn.functional.softmax(attn_weights, dim=-1) # Downcast (if necessary) back to V's dtype (if in mixed-precision) -- No-Op otherwise attn_weights = attn_weights.type(value.dtype) attn_weights = self.attn_dropout(attn_weights) # Mask heads if we want to if head_mask is not None: attn_weights = attn_weights * head_mask # (b, num_heads, sq, sk) -> (b, num_heads * sq, sk) _attn_weights = attn_weights.view(batch_size, self.num_heads * query_length, key_length) # (b, num_heads * sq, sk) x (b, sk, head_dim) -> (b, num_heads * sq, head_dim) attn_output = torch.bmm(_attn_weights, value) attn_output = attn_output.view(batch_size, self.num_heads, query_length, self.head_dim) return attn_output, attn_weights def _merge_heads(self, tensor): """ Merges attn_head_size dim and num_attn_heads dim into hidden_size """ batch_size, num_heads, seq_length, head_dim = tensor.shape tensor = tensor.permute(0, 2, 1, 3) return tensor.reshape(batch_size, seq_length, num_heads * head_dim) def forward( self, hidden_states: Optional[Tuple[torch.FloatTensor]], layer_past: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = False, output_attentions: Optional[bool] = False, ) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]], ...]: if encoder_hidden_states is not None: raise NotImplementedError("Cross-attention not implemented for MQA") else: query = self.q_attn(hidden_states) key, value = self.kv_attn(hidden_states).split(self.head_dim, dim=2) batch_size, seq_length = query.shape[:2] # (query_length, batch, num_heads, head_dim) # (batch, num_heads * query_length, head_dim)\ # (batch, query_length, hidden_size) -> (batch, num_heads, query_length, head_dim) query = query.view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2) # -> (batch, num_heads * query_length, head_dim) query = query.reshape(batch_size, self.num_heads * seq_length, self.head_dim) key = key.transpose(1, 2) # (batch_size, head_dim, seq_length) if layer_past is not None: past_key, past_value = layer_past # Concatenate on sequence dimension key = torch.cat((past_key, key), dim=-1) value = torch.cat((past_value, value), dim=-2) if use_cache is True: present = (key, value) else: present = None if self.reorder_and_upcast_attn: raise NotImplementedError("Reorder and upcast attention not implemented for MQA") else: attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask) attn_output = self._merge_heads(attn_output) attn_output = self.c_proj(attn_output) attn_output = self.resid_dropout(attn_output) outputs = (attn_output, present) if output_attentions: outputs += (attn_weights,) return outputs # a, present, (attentions) # inherit from gpt_modeling.py, and override `attn` module class GPT2CustomBlock(GPT2Block): def __init__(self, config: GPT2CustomConfig, layer_idx=None): super().__init__(config, layer_idx) # Override attention module if using multiquery if config.attention_head_type == MULTI_QUERY: self.attn = GPT2MQAttention(config, layer_idx=layer_idx) if config.add_cross_attention: raise NotImplementedError("Cross-attention not implemented for MQA") hidden_size = config.hidden_size inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size self.mlp = LinearGPT2MLP(inner_dim, config) # inherit from gpt_modeling.py and override `__init__` and `forward` methods class GPT2CustomModel(GPT2Model): config_class = GPT2CustomConfig def __init__(self, config): GPT2PreTrainedModel.__init__(self, config) if config.attention_head_type != MULTI_QUERY: raise NotImplementedError("optimized gpt2 is not implemented for MHA") self.embed_dim = config.hidden_size self.wte = nn.Embedding(config.vocab_size, self.embed_dim) self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim) self.drop = nn.Dropout(config.embd_pdrop) self.h = nn.ModuleList([GPT2CustomBlock(config, layer_idx=i) for i in range(config.num_hidden_layers)]) self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon) # Model parallel self.model_parallel = False self.device_map = None self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def forward( self, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) batch_size = input_ids.shape[0] seq_length = input_ids.shape[1] elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] batch_size = inputs_embeds.shape[0] seq_length = input_ids.shape[1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device if token_type_ids is not None: token_type_ids = token_type_ids.view(-1, input_shape[-1]) if position_ids is not None: position_ids = position_ids.view(-1, input_shape[-1]) if past_key_values is None: past_key_values = tuple([None] * len(self.h)) seq_length_with_past = seq_length past_key_values_length = 0 if past_key_values[0] is not None: past_key_values_length = past_key_values[0][0].shape[-1] seq_length_with_past = seq_length_with_past + past_key_values_length if position_ids is None: position_ids = torch.arange(past_key_values_length, input_shape[-1] + past_key_values_length, dtype=torch.long, device=device) position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1]) # GPT2Attention mask. if attention_mask is None: attention_mask = torch.ones((batch_size, seq_length_with_past), device=input_ids.device) else: attention_mask = attention_mask.to(input_ids.device) attention_mask = prepare_attn_mask( attention_mask, input_shape=(batch_size, seq_length), past_key_values_length=past_key_values_length, ) attention_mask = attention_mask.unsqueeze(1).expand(batch_size, self.config.num_attention_heads, *attention_mask.shape[1:]) # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.add_cross_attention and encoder_hidden_states is not None: raise NotImplementedError else: encoder_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # head_mask has shape n_layer x batch x n_heads x N x N head_mask = self.get_head_mask(head_mask, self.config.n_layer) if inputs_embeds is None: inputs_embeds = self.wte(input_ids) position_embeds = self.wpe(position_ids) hidden_states = inputs_embeds + position_embeds if token_type_ids is not None: token_type_embeds = self.wte(token_type_ids) hidden_states = hidden_states + token_type_embeds hidden_states = self.drop(hidden_states) output_shape = input_shape + (hidden_states.size(-1),) presents = () if use_cache else None all_self_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None all_hidden_states = () if output_hidden_states else None for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)): # Model parallel if self.model_parallel: torch.cuda.set_device(hidden_states.device) # Ensure layer_past is on same device as hidden_states (might not be correct) if layer_past is not None: layer_past = tuple(past_state.to(hidden_states.device) for past_state in layer_past) # Ensure that attention_mask is always on the same device as hidden_states if attention_mask is not None: attention_mask = attention_mask.to(hidden_states.device) if isinstance(head_mask, torch.Tensor): head_mask = head_mask.to(hidden_states.device) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if self.gradient_checkpointing and self.training: if use_cache: logger.warning( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False def create_custom_forward(module): def custom_forward(*inputs): # None for past_key_value return module(*inputs, use_cache, output_attentions) return custom_forward outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(block), hidden_states, None, attention_mask, head_mask[i], encoder_hidden_states, encoder_attention_mask, ) else: outputs = block( hidden_states, layer_past=layer_past, attention_mask=attention_mask, head_mask=head_mask[i], encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, use_cache=use_cache, output_attentions=output_attentions, ) hidden_states = outputs[0] if use_cache is True: presents = presents + (outputs[1],) if output_attentions: all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],) if self.config.add_cross_attention: all_cross_attentions = all_cross_attentions + (outputs[3 if use_cache else 2],) # Model Parallel: If it's the last layer for that device, put things on the next device if self.model_parallel: for k, v in self.device_map.items(): if i == v[-1] and "cuda:" + str(k) != self.last_device: hidden_states = hidden_states.to("cuda:" + str(k + 1)) hidden_states = self.ln_f(hidden_states) hidden_states = hidden_states.view(output_shape) # Add last hidden state if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [hidden_states, presents, all_hidden_states, all_self_attentions, all_cross_attentions] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=presents, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, ) class GPT2LMHeadCustomModel(GPT2LMHeadModel): config_class = GPT2CustomConfig def __init__(self, config): GPT2PreTrainedModel.__init__(self, config) self.transformer = GPT2CustomModel(config) self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) # Model parallel self.model_parallel = False self.device_map = None # Initialize weights and apply final processing self.post_init()