--- license: apache-2.0 tags: - LoRA - 4-bit - BF16 - FlashAttn2 - Pokémon - EMA - fast-training - text-generation - chat - transformers language: en datasets: - ogmatrixllm/pokemon-lore-instructions finetuned_from: Qwen/Qwen2.5-7B-Instruct tasks: - text-generation metrics: - accuracy - code_eval base_model: - Qwen/Qwen2.5-Coder-7B-Instruct pipeline_tag: text-generation --- # Qwen2.5-Coder-7B LoRA 4-bit BF16 w/ FlashAttn2, short seq=512 for faster iteration This is a LoRA-fused model based on **Qwen/Qwen2.5-7B-Instruct**. ## Model Description - **Model Name**: Qwen2.5-Coder-7B LoRA 4-bit BF16 w/ FlashAttn2, short seq=512 for faster iteration - **Language**: en - **License**: apache-2.0 - **Dataset**: ogmatrixllm/pokemon-lore-instructions - **Tags**: LoRA, 4-bit, BF16, FlashAttn2, Pokémon, EMA, fast-training, text-generation, chat, transformers ## Usage ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("ogmatrixllm/arcadex-llm") model = AutoModelForCausalLM.from_pretrained("ogmatrixllm/arcadex-llm") prompt = "Hello, world!" inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**inputs) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ```