--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-large-uncased tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: math_question_grade_detection_v2 results: [] --- # math_question_grade_detection_v2 This model is a fine-tuned version of [google-bert/bert-large-uncased](https://huggingface.co/google-bert/bert-large-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.1410 - Accuracy: 0.1591 - Precision: 0.0253 - Recall: 0.1591 - F1: 0.0437 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - training_steps: 850 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 0.0683 | 50 | 2.0313 | 0.2237 | 0.0856 | 0.2237 | 0.1038 | | No log | 0.1366 | 100 | 2.2165 | 0.1337 | 0.0179 | 0.1337 | 0.0316 | | No log | 0.2049 | 150 | 2.1366 | 0.1722 | 0.0296 | 0.1722 | 0.0506 | | No log | 0.2732 | 200 | 2.1438 | 0.1722 | 0.0296 | 0.1722 | 0.0506 | | No log | 0.3415 | 250 | 2.1389 | 0.1591 | 0.0253 | 0.1591 | 0.0437 | | No log | 0.4098 | 300 | 2.1450 | 0.1722 | 0.0296 | 0.1722 | 0.0506 | | No log | 0.4781 | 350 | 2.1456 | 0.1722 | 0.0296 | 0.1722 | 0.0506 | | No log | 0.5464 | 400 | 2.1396 | 0.1722 | 0.0296 | 0.1722 | 0.0506 | | No log | 0.6148 | 450 | 2.1349 | 0.1722 | 0.0296 | 0.1722 | 0.0506 | | 2.1632 | 0.6831 | 500 | 2.1392 | 0.1591 | 0.0253 | 0.1591 | 0.0437 | | 2.1632 | 0.7514 | 550 | 2.1391 | 0.1722 | 0.0296 | 0.1722 | 0.0506 | | 2.1632 | 0.8197 | 600 | 2.1391 | 0.1591 | 0.0253 | 0.1591 | 0.0437 | | 2.1632 | 0.8880 | 650 | 2.1360 | 0.1722 | 0.0296 | 0.1722 | 0.0506 | | 2.1632 | 0.9563 | 700 | 2.1366 | 0.1722 | 0.0296 | 0.1722 | 0.0506 | | 2.1632 | 1.0246 | 750 | 2.1388 | 0.1591 | 0.0253 | 0.1591 | 0.0437 | | 2.1632 | 1.0929 | 800 | 2.1410 | 0.1591 | 0.0253 | 0.1591 | 0.0437 | | 2.1632 | 1.1612 | 850 | 2.1410 | 0.1591 | 0.0253 | 0.1591 | 0.0437 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.2.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0