--- library_name: transformers license: apache-2.0 base_model: Qwen/Qwen2-7B tags: - axolotl - generated_from_trainer datasets: - penfever/allenai_WildChat-1M-Full-meta-llama_Llama-3.1-8B-Instruct model-index: - name: qwen-2-7b-WildChat-250k-llama-3.1-8b-instruct results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.6.0` ```yaml base_model: Qwen/Qwen2-7B trust_remote_code: true strict: false chat_template: llama3 datasets: - path: penfever/allenai_WildChat-1M-Full-meta-llama_Llama-3.1-8B-Instruct type: chat_template split: train[:25%] field_messages: conversation message_field_role: role message_field_content: content dataset_prepared_path: /scratch/bf996/axolotl/datasets/wildchat-250k-llama-3.1-8b-instruct val_set_size: 0.02 output_dir: /scratch/bf996/axolotl/outputs/qwen-2-7b-wildchat-250k-llama-3.1-8b-instruct sequence_len: 2048 sample_packing: true pad_to_sequence_len: true wandb_project: lm-evals wandb_entity: wandb_watch: wandb_name: qwen-2-7b-WildChat-llama-3.1-8b-instruct wandb_log_model: hub_model_id: penfever/qwen-2-7b-WildChat-250k-llama-3.1-8b-instruct gradient_accumulation_steps: 8 micro_batch_size: 1 num_epochs: 1 optimizer: paged_adamw_8bit lr_scheduler: cosine learning_rate: 2e-5 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false early_stopping_patience: resume_from_checkpoint: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 100 evals_per_epoch: 0 eval_table_size: saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: pad_token: <|finetune_right_pad_id|> eos_token: <|eot_id|> bos_token: <|begin_of_text|> ```

# qwen-2-7b-WildChat-250k-llama-3.1-8b-instruct This model is a fine-tuned version of [Qwen/Qwen2-7B](https://huggingface.co/Qwen/Qwen2-7B) on the penfever/allenai_WildChat-1M-Full-meta-llama_Llama-3.1-8B-Instruct dataset. It achieves the following results on the evaluation set: - Loss: 6.7290 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - total_eval_batch_size: 4 - optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 8.1514 | 0.9998 | 2815 | 6.7290 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.21.0