--- library_name: transformers license: llama3.1 base_model: meta-llama/Meta-Llama-3.1-8B tags: - axolotl - generated_from_trainer datasets: - allenai/tulu-3-sft-mixture model-index: - name: Llama-3-8B-tulu3-sft results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.6.0` ```yaml base_model: meta-llama/Meta-Llama-3.1-8B plugins: - axolotl.integrations.liger.LigerPlugin liger_rope: true liger_rms_norm: true liger_glu_activation: true liger_fused_linear_cross_entropy: true strict: false chat_template: llama3 datasets: - path: allenai/tulu-3-sft-mixture type: chat_template split: train field_messages: messages message_field_role: role message_field_content: content dataset_prepared_path: tulu-v3-sft output_dir: ./outputs/datasets/tulu-v3-sft sequence_len: 4096 sample_packing: true pad_to_sequence_len: false wandb_project: lm-evals wandb_entity: wandb_watch: wandb_name: Llama-3-8B-tulu3-sft wandb_log_model: hub_model_id: penfever/Llama-3-8B-tulu3-sft gradient_accumulation_steps: 16 micro_batch_size: 2 num_epochs: 2 optimizer: adamw_torch lr_scheduler: cosine learning_rate: 5e-6 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false early_stopping_patience: resume_from_checkpoint: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 100 evals_per_epoch: 0 eval_table_size: saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: - full_shard - auto_wrap fsdp_config: fsdp_limit_all_gathers: true fsdp_sync_module_states: true fsdp_offload_params: true fsdp_use_orig_params: false fsdp_cpu_ram_efficient_loading: true fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer fsdp_state_dict_type: FULL_STATE_DICT fsdp_sharding_strategy: FULL_SHARD fsdp_backward_prefetch: BACKWARD_PRE special_tokens: pad_token: <|finetune_right_pad_id|> eos_token: <|eot_id|> ```

# Llama-3-8B-tulu3-sft This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B) on the allenai/tulu-3-sft-mixture dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - total_eval_batch_size: 8 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.21.0