Upload model
Browse files- cls_token.py +1 -1
- enable_cpe_support.py +1 -1
- eradio_model.py +412 -660
- hf_model.py +1 -2
- input_conditioner.py +1 -1
- pytorch_model.bin +1 -1
- radio_model.py +31 -3
- vit_patch_generator.py +3 -3
cls_token.py
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
|
| 2 |
#
|
| 3 |
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
| 4 |
# and proprietary rights in and to this software, related documentation
|
|
|
|
| 1 |
+
# Copyright (c) 2023-2024, NVIDIA CORPORATION. All rights reserved.
|
| 2 |
#
|
| 3 |
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
| 4 |
# and proprietary rights in and to this software, related documentation
|
enable_cpe_support.py
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
|
| 2 |
#
|
| 3 |
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
| 4 |
# and proprietary rights in and to this software, related documentation
|
|
|
|
| 1 |
+
# Copyright (c) 2023-2024, NVIDIA CORPORATION. All rights reserved.
|
| 2 |
#
|
| 3 |
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
| 4 |
# and proprietary rights in and to this software, related documentation
|
eradio_model.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
|
| 3 |
-
# Copyright (c)
|
| 4 |
#
|
| 5 |
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
| 6 |
# and proprietary rights in and to this software, related documentation
|
|
@@ -8,8 +8,12 @@
|
|
| 8 |
# distribution of this software and related documentation without an express
|
| 9 |
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
| 10 |
|
| 11 |
-
#
|
| 12 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
import torch
|
| 15 |
import torch.nn as nn
|
|
@@ -18,15 +22,105 @@ from timm.models.registry import register_model
|
|
| 18 |
from timm.models.layers import trunc_normal_, DropPath, LayerNorm2d
|
| 19 |
import numpy as np
|
| 20 |
import torch.nn.functional as F
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
-
TRT = False # should help for TRT
|
| 24 |
|
| 25 |
-
|
|
|
|
|
|
|
| 26 |
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
|
| 32 |
def pixel_unshuffle(data, factor=2):
|
|
@@ -63,6 +157,7 @@ def window_partition(x, window_size):
|
|
| 63 |
else:
|
| 64 |
pad_h = (window_size - H % window_size) % window_size
|
| 65 |
pad_w = (window_size - W % window_size) % window_size
|
|
|
|
| 66 |
if pad_h > 0 or pad_w > 0:
|
| 67 |
x = F.pad(x, (0, pad_w, 0, pad_h, 0, 0, 0, 0))
|
| 68 |
Hp, Wp = H + pad_h, W + pad_w
|
|
@@ -106,8 +201,6 @@ class Conv2d_BN(nn.Module):
|
|
| 106 |
|
| 107 |
@torch.no_grad()
|
| 108 |
def switch_to_deploy(self):
|
| 109 |
-
|
| 110 |
-
# return 1
|
| 111 |
if not isinstance(self.bn, nn.Identity):
|
| 112 |
c, bn = self.conv, self.bn
|
| 113 |
w = bn.weight / (bn.running_var + bn.eps) ** 0.5
|
|
@@ -149,25 +242,47 @@ def window_reverse(windows, window_size, H, W, pad_hw):
|
|
| 149 |
|
| 150 |
|
| 151 |
class PosEmbMLPSwinv2D(nn.Module):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
def __init__(
|
| 153 |
-
self, window_size, pretrained_window_size, num_heads, seq_length, no_log=False
|
| 154 |
):
|
| 155 |
super().__init__()
|
| 156 |
self.window_size = window_size
|
| 157 |
self.num_heads = num_heads
|
| 158 |
# mlp to generate continuous relative position bias
|
| 159 |
self.cpb_mlp = nn.Sequential(
|
| 160 |
-
nn.Linear(2,
|
| 161 |
nn.ReLU(inplace=True),
|
| 162 |
-
nn.Linear(
|
| 163 |
)
|
| 164 |
|
| 165 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
relative_coords_h = torch.arange(
|
| 167 |
-
-(
|
| 168 |
)
|
| 169 |
relative_coords_w = torch.arange(
|
| 170 |
-
-(
|
| 171 |
)
|
| 172 |
relative_coords_table = (
|
| 173 |
torch.stack(torch.meshgrid([relative_coords_h, relative_coords_w]))
|
|
@@ -190,8 +305,6 @@ class PosEmbMLPSwinv2D(nn.Module):
|
|
| 190 |
/ np.log2(8)
|
| 191 |
)
|
| 192 |
|
| 193 |
-
self.register_buffer("relative_coords_table", relative_coords_table)
|
| 194 |
-
|
| 195 |
# get pair-wise relative position index for each token inside the window
|
| 196 |
coords_h = torch.arange(self.window_size[0])
|
| 197 |
coords_w = torch.arange(self.window_size[1])
|
|
@@ -207,15 +320,13 @@ class PosEmbMLPSwinv2D(nn.Module):
|
|
| 207 |
relative_coords[:, :, 1] += self.window_size[1] - 1
|
| 208 |
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
|
| 209 |
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
| 210 |
-
self.register_buffer("relative_position_index", relative_position_index)
|
| 211 |
|
| 212 |
-
|
| 213 |
|
| 214 |
-
self.
|
|
|
|
|
|
|
| 215 |
|
| 216 |
-
relative_bias = torch.zeros(1, num_heads, seq_length, seq_length)
|
| 217 |
-
self.seq_length = seq_length
|
| 218 |
-
self.register_buffer("relative_bias", relative_bias) # for EMA
|
| 219 |
|
| 220 |
def switch_to_deploy(self):
|
| 221 |
self.deploy = True
|
|
@@ -224,19 +335,25 @@ class PosEmbMLPSwinv2D(nn.Module):
|
|
| 224 |
def forward(self, input_tensor):
|
| 225 |
# for efficiency, we want this forward to be folded into a single operation (sum)
|
| 226 |
# if resolution stays the same, then we dont need to recompute MLP layers
|
| 227 |
-
#
|
| 228 |
-
# to dynamically adjust patch size over the step
|
| 229 |
-
# if not (input_tensor.shape[1:] == self.relative_bias.shape[1:]):
|
| 230 |
-
# self.grid_exists = False
|
| 231 |
|
| 232 |
-
if self.training:
|
| 233 |
self.grid_exists = False
|
| 234 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 235 |
if self.deploy and self.grid_exists:
|
| 236 |
input_tensor += self.relative_bias
|
| 237 |
return input_tensor
|
| 238 |
|
| 239 |
-
if
|
| 240 |
self.grid_exists = True
|
| 241 |
|
| 242 |
relative_position_bias_table = self.cpb_mlp(
|
|
@@ -279,142 +396,40 @@ class GRAAttentionBlock(nn.Module):
|
|
| 279 |
conv_base=False,
|
| 280 |
do_windowing=True,
|
| 281 |
multi_query=False,
|
|
|
|
| 282 |
) -> None:
|
| 283 |
super().__init__()
|
| 284 |
|
| 285 |
-
|
| 286 |
-
# conv_base = True
|
| 287 |
-
SHUFFLE = True
|
| 288 |
-
SHUFFLE = False
|
| 289 |
self.do_windowing = do_windowing
|
| 290 |
|
| 291 |
if do_windowing:
|
| 292 |
-
if
|
| 293 |
-
|
| 294 |
-
torch.nn.PixelUnshuffle(subsample_ratio)
|
| 295 |
-
if subsample_ratio > 1
|
| 296 |
-
else torch.nn.Identity()
|
| 297 |
-
)
|
| 298 |
-
self.downsample_mixer = (
|
| 299 |
-
nn.Conv2d(
|
| 300 |
-
dim_in * (subsample_ratio * subsample_ratio),
|
| 301 |
-
dim_in * (dim_ratio),
|
| 302 |
-
kernel_size=1,
|
| 303 |
-
stride=1,
|
| 304 |
-
padding=0,
|
| 305 |
-
bias=False,
|
| 306 |
-
)
|
| 307 |
-
if dim * dim_ratio != dim * subsample_ratio * subsample_ratio
|
| 308 |
-
else torch.nn.Identity()
|
| 309 |
-
)
|
| 310 |
-
else:
|
| 311 |
-
if conv_base:
|
| 312 |
-
self.downsample_op = (
|
| 313 |
-
nn.Conv2d(
|
| 314 |
-
dim_in,
|
| 315 |
-
dim_out,
|
| 316 |
-
kernel_size=subsample_ratio,
|
| 317 |
-
stride=subsample_ratio,
|
| 318 |
-
)
|
| 319 |
-
if subsample_ratio > 1
|
| 320 |
-
else nn.Identity()
|
| 321 |
-
)
|
| 322 |
self.downsample_mixer = nn.Identity()
|
| 323 |
-
else:
|
| 324 |
-
self.downsample_op = (
|
| 325 |
-
nn.AvgPool2d(
|
| 326 |
-
kernel_size=subsample_ratio, stride=subsample_ratio
|
| 327 |
-
)
|
| 328 |
-
if subsample_ratio > 1
|
| 329 |
-
else nn.Identity()
|
| 330 |
-
)
|
| 331 |
-
self.downsample_mixer = (
|
| 332 |
-
Conv2d_BN(dim_in, dim_out, kernel_size=1, stride=1)
|
| 333 |
-
if subsample_ratio > 1
|
| 334 |
-
else nn.Identity()
|
| 335 |
-
)
|
| 336 |
-
|
| 337 |
-
if do_windowing:
|
| 338 |
-
if SHUFFLE:
|
| 339 |
-
self.upsample_mixer = (
|
| 340 |
-
nn.Conv2d(
|
| 341 |
-
dim_in * dim_ratio,
|
| 342 |
-
dim_in * (subsample_ratio * subsample_ratio),
|
| 343 |
-
kernel_size=1,
|
| 344 |
-
stride=1,
|
| 345 |
-
padding=0,
|
| 346 |
-
bias=False,
|
| 347 |
-
)
|
| 348 |
-
if dim * dim_ratio != dim * subsample_ratio * subsample_ratio
|
| 349 |
-
else torch.nn.Identity()
|
| 350 |
-
)
|
| 351 |
-
self.upsample_op = (
|
| 352 |
-
torch.nn.PixelShuffle(subsample_ratio)
|
| 353 |
-
if subsample_ratio > 1
|
| 354 |
-
else torch.nn.Identity()
|
| 355 |
-
)
|
| 356 |
-
else:
|
| 357 |
-
if conv_base:
|
| 358 |
self.upsample_mixer = nn.Identity()
|
| 359 |
-
self.upsample_op = (
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
)
|
| 366 |
-
if subsample_ratio > 1
|
| 367 |
-
else nn.Identity()
|
| 368 |
-
)
|
| 369 |
-
else:
|
| 370 |
-
self.upsample_mixer = (
|
| 371 |
-
nn.Upsample(scale_factor=subsample_ratio, mode="nearest")
|
| 372 |
-
if subsample_ratio > 1
|
| 373 |
-
else nn.Identity()
|
| 374 |
-
)
|
| 375 |
-
self.upsample_op = (
|
| 376 |
-
Conv2d_BN(
|
| 377 |
-
dim_in,
|
| 378 |
-
dim_out,
|
| 379 |
-
kernel_size=1,
|
| 380 |
-
stride=1,
|
| 381 |
-
padding=0,
|
| 382 |
-
bias=False,
|
| 383 |
-
)
|
| 384 |
-
if subsample_ratio > 1
|
| 385 |
-
else nn.Identity()
|
| 386 |
-
)
|
| 387 |
|
| 388 |
self.window_size = window_size
|
| 389 |
|
| 390 |
self.norm1 = norm_layer(dim_in)
|
| 391 |
-
if DEBUG:
|
| 392 |
-
print(
|
| 393 |
-
f"GRAAttentionBlock: input_resolution: , window_size: {window_size}, dim_in: {dim_in}, dim_out: {dim_out}, num_heads: {num_heads}, drop_path: {drop_path}, qk_scale: {qk_scale}, qkv_bias: {qkv_bias}, layer_scale: {layer_scale}"
|
| 394 |
-
)
|
| 395 |
|
| 396 |
self.attn = WindowAttention(
|
| 397 |
dim_in,
|
| 398 |
-
num_heads=num_heads,
|
| 399 |
-
qkv_bias=qkv_bias,
|
| 400 |
-
qk_scale=qk_scale,
|
| 401 |
resolution=window_size,
|
| 402 |
-
seq_length=window_size
|
| 403 |
-
|
| 404 |
-
multi_query=multi_query,
|
| 405 |
-
)
|
| 406 |
-
if DEBUG:
|
| 407 |
-
print(
|
| 408 |
-
f"Attention: dim_in: {dim_in}, num_heads: {num_heads}, qkv_bias: {qkv_bias}, qk_scale: {qk_scale}, resolution: {window_size}, seq_length: {window_size**2}, dim_out: {dim_in}"
|
| 409 |
-
)
|
| 410 |
-
print(f"drop_path: {drop_path}, layer_scale: {layer_scale}")
|
| 411 |
|
| 412 |
-
self.drop_path1 = DropPath(drop_path) if drop_path > 0.
|
| 413 |
|
| 414 |
use_layer_scale = layer_scale is not None and type(layer_scale) in [int, float]
|
| 415 |
-
self.gamma1 = (
|
| 416 |
-
nn.Parameter(layer_scale * torch.ones(dim_in)) if use_layer_scale else 1
|
| 417 |
-
)
|
| 418 |
|
| 419 |
### mlp layer
|
| 420 |
mlp_ratio = 4
|
|
@@ -422,26 +437,13 @@ class GRAAttentionBlock(nn.Module):
|
|
| 422 |
mlp_hidden_dim = int(dim_in * mlp_ratio)
|
| 423 |
|
| 424 |
activation = nn.GELU if not use_swiglu else SwiGLU
|
| 425 |
-
mlp_hidden_dim = (
|
| 426 |
-
int((4 * dim_in * 1 / 2) / 64) * 64 if use_swiglu else mlp_hidden_dim
|
| 427 |
-
)
|
| 428 |
|
| 429 |
-
self.mlp = Mlp(
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
|
| 433 |
-
use_swiglu=use_swiglu,
|
| 434 |
-
)
|
| 435 |
|
| 436 |
-
self.gamma2 = (
|
| 437 |
-
nn.Parameter(layer_scale * torch.ones(dim_in)) if layer_scale else 1
|
| 438 |
-
)
|
| 439 |
-
self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
| 440 |
-
if DEBUG:
|
| 441 |
-
print(
|
| 442 |
-
f"MLP layer: dim_in: {dim_in}, dim_out: {dim_in}, mlp_hidden_dim: {mlp_hidden_dim}"
|
| 443 |
-
)
|
| 444 |
-
print(f"drop_path: {drop_path}, layer_scale: {layer_scale}")
|
| 445 |
|
| 446 |
def forward(self, x):
|
| 447 |
skip_connection = x
|
|
@@ -514,6 +516,7 @@ class MultiResolutionAttention(nn.Module):
|
|
| 514 |
use_swiglu=True,
|
| 515 |
multi_query=False,
|
| 516 |
conv_base=False,
|
|
|
|
| 517 |
) -> None:
|
| 518 |
"""
|
| 519 |
Args:
|
|
@@ -552,6 +555,7 @@ class MultiResolutionAttention(nn.Module):
|
|
| 552 |
do_windowing=do_windowing,
|
| 553 |
multi_query=multi_query,
|
| 554 |
conv_base=conv_base,
|
|
|
|
| 555 |
),
|
| 556 |
)
|
| 557 |
|
|
@@ -594,16 +598,13 @@ class Mlp(nn.Module):
|
|
| 594 |
)
|
| 595 |
self.act = act_layer()
|
| 596 |
self.fc2 = nn.Linear(hidden_features, out_features, bias=False)
|
| 597 |
-
# self.drop = GaussianDropout(drop)
|
| 598 |
|
| 599 |
def forward(self, x):
|
| 600 |
x_size = x.size()
|
| 601 |
x = x.view(-1, x_size[-1])
|
| 602 |
x = self.fc1(x)
|
| 603 |
x = self.act(x)
|
| 604 |
-
# x = self.drop(x)
|
| 605 |
x = self.fc2(x)
|
| 606 |
-
# x = self.drop(x)
|
| 607 |
x = x.view(x_size)
|
| 608 |
return x
|
| 609 |
|
|
@@ -621,7 +622,7 @@ class Downsample(nn.Module):
|
|
| 621 |
"""
|
| 622 |
Args:
|
| 623 |
dim: feature size dimension.
|
| 624 |
-
shuffle: idea with
|
| 625 |
keep_dim: bool argument for maintaining the resolution.
|
| 626 |
"""
|
| 627 |
|
|
@@ -632,8 +633,6 @@ class Downsample(nn.Module):
|
|
| 632 |
self.norm = lambda x: pixel_unshuffle(x, factor=2)
|
| 633 |
self.reduction = Conv2d_BN(dim * 4, dim_out, 1, 1, 0, bias=False)
|
| 634 |
else:
|
| 635 |
-
# removed layer norm for better, in this formulation we are getting 10% better speed
|
| 636 |
-
# LayerNorm for high resolution inputs will be a pain as it pools over the entire spatial dimension
|
| 637 |
self.norm = nn.Identity()
|
| 638 |
self.reduction = Conv2d_BN(dim, dim_out, 3, 2, 1, bias=False)
|
| 639 |
|
|
@@ -646,6 +645,8 @@ class Downsample(nn.Module):
|
|
| 646 |
class PatchEmbed(nn.Module):
|
| 647 |
"""
|
| 648 |
Patch embedding block
|
|
|
|
|
|
|
| 649 |
"""
|
| 650 |
|
| 651 |
def __init__(self, in_chans=3, in_dim=64, dim=96, shuffle_down=False):
|
|
@@ -669,12 +670,6 @@ class PatchEmbed(nn.Module):
|
|
| 669 |
)
|
| 670 |
else:
|
| 671 |
self.proj = lambda x: pixel_unshuffle(x, factor=4)
|
| 672 |
-
|
| 673 |
-
# self.conv_down = nn.Sequential(Conv2d_BN(in_chans*16, in_dim, 3, 1, 1),
|
| 674 |
-
# nn.SiLU(),
|
| 675 |
-
# Conv2d_BN(in_dim, dim, 3, 1, 1),
|
| 676 |
-
# nn.SiLU(),
|
| 677 |
-
# )
|
| 678 |
self.conv_down = nn.Sequential(
|
| 679 |
Conv2d_BN(in_chans * 16, dim, 3, 1, 1), nn.ReLU(),
|
| 680 |
)
|
|
@@ -689,33 +684,19 @@ class ConvBlock(nn.Module):
|
|
| 689 |
"""
|
| 690 |
Convolutional block, used in first couple of stages
|
| 691 |
Experimented with plan resnet-18 like modules, they are the best in terms of throughput
|
| 692 |
-
Experimented with RepVGG, dont see significant improvement in accuracy
|
| 693 |
Finally, YOLOv8 idea seem to work fine (resnet-18 like block with squeezed feature dimension, and feature concatendation at the end)
|
| 694 |
"""
|
| 695 |
-
|
| 696 |
-
|
| 697 |
-
|
| 698 |
-
|
|
|
|
| 699 |
super().__init__()
|
| 700 |
-
self.rep_vgg = rep_vgg
|
| 701 |
-
if not rep_vgg:
|
| 702 |
-
self.conv1 = Conv2d_BN(
|
| 703 |
-
dim, dim, kernel_size=kernel_size, stride=1, padding=1
|
| 704 |
-
)
|
| 705 |
-
self.act1 = nn.GELU()
|
| 706 |
-
else:
|
| 707 |
-
self.conv1 = RepVGGBlock(
|
| 708 |
-
dim, dim, kernel_size=kernel_size, stride=1, padding=1, groups=1
|
| 709 |
-
)
|
| 710 |
|
| 711 |
-
|
| 712 |
-
|
| 713 |
-
|
| 714 |
-
|
| 715 |
-
else:
|
| 716 |
-
self.conv2 = RepVGGBlock(
|
| 717 |
-
dim, dim, kernel_size=kernel_size, stride=1, padding=1, groups=1
|
| 718 |
-
)
|
| 719 |
|
| 720 |
self.layer_scale = layer_scale
|
| 721 |
if layer_scale is not None and type(layer_scale) in [int, float]:
|
|
@@ -723,17 +704,15 @@ class ConvBlock(nn.Module):
|
|
| 723 |
self.layer_scale = True
|
| 724 |
else:
|
| 725 |
self.layer_scale = False
|
| 726 |
-
self.drop_path = DropPath(drop_path) if drop_path > 0.
|
| 727 |
|
| 728 |
def forward(self, x):
|
| 729 |
input = x
|
| 730 |
-
|
| 731 |
-
|
| 732 |
-
|
| 733 |
-
|
| 734 |
-
|
| 735 |
-
x = self.conv1(x)
|
| 736 |
-
x = self.conv2(x)
|
| 737 |
if self.layer_scale:
|
| 738 |
x = x * self.gamma.view(1, -1, 1, 1)
|
| 739 |
x = input + self.drop_path(x)
|
|
@@ -743,9 +722,6 @@ class ConvBlock(nn.Module):
|
|
| 743 |
class WindowAttention(nn.Module):
|
| 744 |
# Windowed Attention from SwinV2
|
| 745 |
# use a MLP trick to deal with various input image resolutions, then fold it to improve speed
|
| 746 |
-
# tested multi-querry attention, but it is not as good as full attention:
|
| 747 |
-
# look into palm: https://github.com/lucidrains/PaLM-pytorch/blob/main/palm_pytorch/palm_pytorch.py
|
| 748 |
-
# single kv attention, mlp in parallel (didnt improve speed)
|
| 749 |
|
| 750 |
def __init__(
|
| 751 |
self,
|
|
@@ -757,6 +733,7 @@ class WindowAttention(nn.Module):
|
|
| 757 |
seq_length=0,
|
| 758 |
dim_out=None,
|
| 759 |
multi_query=False,
|
|
|
|
| 760 |
):
|
| 761 |
# taken from EdgeViT and tweaked with attention bias.
|
| 762 |
super().__init__()
|
|
@@ -771,12 +748,7 @@ class WindowAttention(nn.Module):
|
|
| 771 |
|
| 772 |
self.scale = qk_scale or head_dim ** -0.5
|
| 773 |
if not multi_query:
|
| 774 |
-
|
| 775 |
-
self.q = nn.Linear(dim, dim, bias=qkv_bias)
|
| 776 |
-
self.k = nn.Linear(dim, dim, bias=qkv_bias)
|
| 777 |
-
self.v = nn.Linear(dim, dim, bias=qkv_bias)
|
| 778 |
-
else:
|
| 779 |
-
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
| 780 |
else:
|
| 781 |
self.qkv = nn.Linear(dim, dim + 2 * self.head_dim, bias=qkv_bias)
|
| 782 |
|
|
@@ -787,6 +759,7 @@ class WindowAttention(nn.Module):
|
|
| 787 |
pretrained_window_size=[resolution, resolution],
|
| 788 |
num_heads=num_heads,
|
| 789 |
seq_length=seq_length,
|
|
|
|
| 790 |
)
|
| 791 |
|
| 792 |
self.resolution = resolution
|
|
@@ -795,29 +768,12 @@ class WindowAttention(nn.Module):
|
|
| 795 |
B, N, C = x.shape
|
| 796 |
|
| 797 |
if not self.multi_query:
|
| 798 |
-
|
| 799 |
-
q = (
|
| 800 |
-
self.q(x)
|
| 801 |
-
.reshape(B, -1, self.num_heads, C // self.num_heads)
|
| 802 |
-
.permute(0, 2, 1, 3)
|
| 803 |
-
)
|
| 804 |
-
k = (
|
| 805 |
-
self.k(x)
|
| 806 |
-
.reshape(B, -1, self.num_heads, C // self.num_heads)
|
| 807 |
-
.permute(0, 2, 1, 3)
|
| 808 |
-
)
|
| 809 |
-
v = (
|
| 810 |
-
self.v(x)
|
| 811 |
-
.reshape(B, -1, self.num_heads, C // self.num_heads)
|
| 812 |
-
.permute(0, 2, 1, 3)
|
| 813 |
-
)
|
| 814 |
-
else:
|
| 815 |
-
qkv = (
|
| 816 |
self.qkv(x)
|
| 817 |
.reshape(B, -1, 3, self.num_heads, C // self.num_heads)
|
| 818 |
.permute(2, 0, 3, 1, 4)
|
| 819 |
)
|
| 820 |
-
|
| 821 |
else:
|
| 822 |
qkv = self.qkv(x)
|
| 823 |
(q, k, v) = qkv.split(
|
|
@@ -864,10 +820,10 @@ class FasterViTLayer(nn.Module):
|
|
| 864 |
sr_ratio=1,
|
| 865 |
multi_query=False,
|
| 866 |
use_swiglu=True,
|
| 867 |
-
rep_vgg=False,
|
| 868 |
yolo_arch=False,
|
| 869 |
downsample_shuffle=False,
|
| 870 |
conv_base=False,
|
|
|
|
| 871 |
):
|
| 872 |
"""
|
| 873 |
Args:
|
|
@@ -899,12 +855,11 @@ class FasterViTLayer(nn.Module):
|
|
| 899 |
drop_path=drop_path[i]
|
| 900 |
if isinstance(drop_path, list)
|
| 901 |
else drop_path,
|
| 902 |
-
layer_scale=layer_scale_conv
|
| 903 |
-
rep_vgg=rep_vgg,
|
| 904 |
-
)
|
| 905 |
for i in range(depth)
|
| 906 |
]
|
| 907 |
)
|
|
|
|
| 908 |
else:
|
| 909 |
self.blocks = C2f(dim, dim, n=depth, shortcut=True, e=0.5)
|
| 910 |
self.yolo_arch = True
|
|
@@ -915,6 +870,7 @@ class FasterViTLayer(nn.Module):
|
|
| 915 |
self.do_single_windowing = True
|
| 916 |
if not isinstance(sr_ratio, list):
|
| 917 |
sr_ratio = [sr_ratio]
|
|
|
|
| 918 |
if any([sr != 1 for sr in sr_ratio]) or len(set(window_size)) > 1:
|
| 919 |
self.do_single_windowing = False
|
| 920 |
do_windowing = True
|
|
@@ -943,37 +899,119 @@ class FasterViTLayer(nn.Module):
|
|
| 943 |
do_windowing=do_windowing,
|
| 944 |
multi_query=multi_query,
|
| 945 |
conv_base=conv_base,
|
|
|
|
| 946 |
)
|
| 947 |
)
|
| 948 |
|
|
|
|
|
|
|
| 949 |
self.transformer = not conv
|
| 950 |
|
| 951 |
self.downsample = (
|
| 952 |
None if not downsample else Downsample(dim=dim, shuffle=downsample_shuffle)
|
| 953 |
)
|
| 954 |
|
|
|
|
| 955 |
def forward(self, x):
|
| 956 |
B, C, H, W = x.shape
|
| 957 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 958 |
if self.transformer and self.do_single_windowing:
|
| 959 |
H, W = x.shape[2], x.shape[3]
|
| 960 |
x, pad_hw = window_partition(x, self.window_size)
|
| 961 |
|
| 962 |
-
|
| 963 |
-
|
| 964 |
-
|
| 965 |
-
|
| 966 |
-
|
|
|
|
| 967 |
|
| 968 |
if self.transformer and self.do_single_windowing:
|
| 969 |
x = window_reverse(x, self.window_size, H, W, pad_hw)
|
| 970 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 971 |
if self.downsample is None:
|
| 972 |
return x, x
|
| 973 |
|
| 974 |
return self.downsample(x), x # changing to output pre downsampled features
|
| 975 |
|
| 976 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 977 |
class FasterViT(nn.Module):
|
| 978 |
"""
|
| 979 |
FasterViT
|
|
@@ -1001,7 +1039,6 @@ class FasterViT(nn.Module):
|
|
| 1001 |
use_swiglu=False,
|
| 1002 |
multi_query=False,
|
| 1003 |
norm_layer=nn.LayerNorm,
|
| 1004 |
-
rep_vgg=False,
|
| 1005 |
drop_uniform=False,
|
| 1006 |
yolo_arch=False,
|
| 1007 |
shuffle_down=False,
|
|
@@ -1010,6 +1047,7 @@ class FasterViT(nn.Module):
|
|
| 1010 |
full_features_head_dim=128,
|
| 1011 |
neck_start_stage=1,
|
| 1012 |
use_neck=False,
|
|
|
|
| 1013 |
**kwargs,
|
| 1014 |
):
|
| 1015 |
"""
|
|
@@ -1074,48 +1112,32 @@ class FasterViT(nn.Module):
|
|
| 1074 |
use_swiglu=use_swiglu,
|
| 1075 |
multi_query=multi_query,
|
| 1076 |
norm_layer=norm_layer,
|
| 1077 |
-
rep_vgg=rep_vgg,
|
| 1078 |
yolo_arch=yolo_arch,
|
| 1079 |
downsample_shuffle=downsample_shuffle,
|
| 1080 |
conv_base=conv_base,
|
|
|
|
|
|
|
| 1081 |
)
|
| 1082 |
|
| 1083 |
self.levels.append(level)
|
| 1084 |
|
| 1085 |
-
if
|
| 1086 |
-
|
| 1087 |
-
|
| 1088 |
-
|
| 1089 |
-
|
| 1090 |
-
|
| 1091 |
-
|
| 1092 |
-
|
| 1093 |
-
|
| 1094 |
-
|
| 1095 |
-
|
| 1096 |
-
|
| 1097 |
-
|
| 1098 |
-
|
| 1099 |
-
|
| 1100 |
-
|
| 1101 |
-
|
| 1102 |
-
if 0:
|
| 1103 |
-
# Train: 0 [1900/10009 ( 19%)] Loss: 6.113 (6.57) Time: 0.548s, 233.40/s (0.549s, 233.04/s) LR: 1.000e-05 Data: 0.015 (0.013)
|
| 1104 |
-
feature_projection.add_module(
|
| 1105 |
-
"norm", nn.BatchNorm2d(level_n_features_output)
|
| 1106 |
-
) # fast, but worse
|
| 1107 |
-
feature_projection.add_module(
|
| 1108 |
-
"dconv",
|
| 1109 |
-
nn.ConvTranspose2d(
|
| 1110 |
-
level_n_features_output,
|
| 1111 |
-
full_features_head_dim,
|
| 1112 |
-
kernel_size=upsample_ratio,
|
| 1113 |
-
stride=upsample_ratio,
|
| 1114 |
-
),
|
| 1115 |
-
)
|
| 1116 |
-
else:
|
| 1117 |
# pixel shuffle based upsampling
|
| 1118 |
-
# Train: 0 [1950/10009 ( 19%)] Loss: 6.190 (6.55) Time: 0.540s, 236.85/s (0.548s, 233.38/s) LR: 1.000e-05 Data: 0.015 (0.013)
|
| 1119 |
feature_projection.add_module(
|
| 1120 |
"norm", nn.BatchNorm2d(level_n_features_output)
|
| 1121 |
) # fast, but worse
|
|
@@ -1133,17 +1155,19 @@ class FasterViT(nn.Module):
|
|
| 1133 |
feature_projection.add_module(
|
| 1134 |
"upsample_pixelshuffle", nn.PixelShuffle(upsample_ratio)
|
| 1135 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1136 |
|
| 1137 |
-
|
| 1138 |
-
feature_projection = nn.Sequential()
|
| 1139 |
-
feature_projection.add_module(
|
| 1140 |
-
"norm", nn.BatchNorm2d(level_n_features_output)
|
| 1141 |
-
)
|
| 1142 |
-
|
| 1143 |
-
self.neck_features_proj.append(feature_projection)
|
| 1144 |
|
| 1145 |
-
|
| 1146 |
-
|
|
|
|
|
|
|
|
|
|
| 1147 |
|
| 1148 |
num_features = (
|
| 1149 |
full_features_head_dim
|
|
@@ -1180,6 +1204,60 @@ class FasterViT(nn.Module):
|
|
| 1180 |
nn.init.ones_(m.weight)
|
| 1181 |
nn.init.zeros_(m.bias)
|
| 1182 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1183 |
@torch.jit.ignore
|
| 1184 |
def no_weight_decay_keywords(self):
|
| 1185 |
return {"rpb"}
|
|
@@ -1191,34 +1269,37 @@ class FasterViT(nn.Module):
|
|
| 1191 |
x, pre_downsample_x = level(x)
|
| 1192 |
|
| 1193 |
if self.return_full_features or self.use_neck:
|
| 1194 |
-
if
|
| 1195 |
-
|
| 1196 |
-
|
| 1197 |
-
full_features
|
| 1198 |
-
|
| 1199 |
-
|
| 1200 |
-
else:
|
| 1201 |
-
# upsample torch tensor x to match full_features size, and add to full_features
|
| 1202 |
-
feature_projection = self.neck_features_proj[
|
| 1203 |
-
il - self.neck_start_stage
|
| 1204 |
-
](pre_downsample_x)
|
| 1205 |
-
if (
|
| 1206 |
-
feature_projection.shape[2] != full_features.shape[2]
|
| 1207 |
-
or feature_projection.shape[3] != full_features.shape[3]
|
| 1208 |
-
):
|
| 1209 |
-
feature_projection = torch.nn.functional.pad(
|
| 1210 |
-
feature_projection,
|
| 1211 |
-
(
|
| 1212 |
-
0,
|
| 1213 |
-
-feature_projection.shape[3] + full_features.shape[3],
|
| 1214 |
-
0,
|
| 1215 |
-
-feature_projection.shape[2] + full_features.shape[2],
|
| 1216 |
-
),
|
| 1217 |
)
|
| 1218 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1219 |
|
| 1220 |
-
# x = self.norm(full_features if (self.return_full_features or self.use_neck) else x)
|
| 1221 |
x = self.norm(x) # new version for
|
|
|
|
| 1222 |
x = self.avgpool(x)
|
| 1223 |
x = torch.flatten(x, 1)
|
| 1224 |
|
|
@@ -1228,7 +1309,9 @@ class FasterViT(nn.Module):
|
|
| 1228 |
return x, full_features
|
| 1229 |
|
| 1230 |
def forward(self, x):
|
|
|
|
| 1231 |
x, full_features = self.forward_features(x)
|
|
|
|
| 1232 |
x = self.head(x)
|
| 1233 |
if full_features is not None:
|
| 1234 |
return x, full_features
|
|
@@ -1245,245 +1328,6 @@ class FasterViT(nn.Module):
|
|
| 1245 |
if hasattr(module, "switch_to_deploy"):
|
| 1246 |
module.switch_to_deploy()
|
| 1247 |
|
| 1248 |
-
|
| 1249 |
-
@register_model
|
| 1250 |
-
def fastervit2_small(pretrained=False, **kwargs): # ,
|
| 1251 |
-
model = FasterViT(
|
| 1252 |
-
depths=[3, 3, 5, 5],
|
| 1253 |
-
num_heads=[2, 4, 8, 16],
|
| 1254 |
-
window_size=[8, 8, [7, 7], 7],
|
| 1255 |
-
dim=96,
|
| 1256 |
-
in_dim=64,
|
| 1257 |
-
mlp_ratio=4,
|
| 1258 |
-
drop_path_rate=0.2,
|
| 1259 |
-
sr_ratio=[1, 1, [1, 2], 1],
|
| 1260 |
-
use_swiglu=False,
|
| 1261 |
-
downsample_shuffle=False,
|
| 1262 |
-
yolo_arch=True,
|
| 1263 |
-
shuffle_down=False,
|
| 1264 |
-
**kwargs,
|
| 1265 |
-
)
|
| 1266 |
-
if pretrained:
|
| 1267 |
-
model.load_state_dict(torch.load(pretrained))
|
| 1268 |
-
return model
|
| 1269 |
-
|
| 1270 |
-
|
| 1271 |
-
@register_model
|
| 1272 |
-
def fastervit2_tiny(pretrained=False, **kwargs): # ,
|
| 1273 |
-
model = FasterViT(
|
| 1274 |
-
depths=[1, 3, 4, 5],
|
| 1275 |
-
num_heads=[2, 4, 8, 16],
|
| 1276 |
-
window_size=[8, 8, [7, 7], 7],
|
| 1277 |
-
dim=80,
|
| 1278 |
-
in_dim=64,
|
| 1279 |
-
mlp_ratio=4,
|
| 1280 |
-
drop_path_rate=0.2,
|
| 1281 |
-
sr_ratio=[1, 1, [2, 1], 1],
|
| 1282 |
-
use_swiglu=False,
|
| 1283 |
-
downsample_shuffle=False,
|
| 1284 |
-
yolo_arch=True,
|
| 1285 |
-
shuffle_down=False,
|
| 1286 |
-
**kwargs,
|
| 1287 |
-
)
|
| 1288 |
-
if pretrained:
|
| 1289 |
-
model.load_state_dict(torch.load(pretrained))
|
| 1290 |
-
return model
|
| 1291 |
-
|
| 1292 |
-
|
| 1293 |
-
@register_model
|
| 1294 |
-
def fastervit2_base(pretrained=False, **kwargs):
|
| 1295 |
-
model = FasterViT(
|
| 1296 |
-
depths=[3, 3, 5, 5],
|
| 1297 |
-
num_heads=[2, 4, 8, 16],
|
| 1298 |
-
window_size=[8, 8, [7, 7], 7],
|
| 1299 |
-
dim=128,
|
| 1300 |
-
in_dim=64,
|
| 1301 |
-
mlp_ratio=4,
|
| 1302 |
-
drop_path_rate=0.2,
|
| 1303 |
-
sr_ratio=[1, 1, [2, 1], 1],
|
| 1304 |
-
use_swiglu=False,
|
| 1305 |
-
yolo_arch=True,
|
| 1306 |
-
shuffle_down=False,
|
| 1307 |
-
conv_base=True,
|
| 1308 |
-
**kwargs,
|
| 1309 |
-
)
|
| 1310 |
-
if pretrained:
|
| 1311 |
-
model.load_state_dict(torch.load(pretrained))
|
| 1312 |
-
return model
|
| 1313 |
-
|
| 1314 |
-
|
| 1315 |
-
@register_model
|
| 1316 |
-
def fastervit2_base_fullres1(pretrained=False, **kwargs):
|
| 1317 |
-
model = FasterViT(
|
| 1318 |
-
depths=[3, 3, 5, 5],
|
| 1319 |
-
num_heads=[2, 4, 8, 16],
|
| 1320 |
-
window_size=[8, 8, [7, 7], 7],
|
| 1321 |
-
dim=128,
|
| 1322 |
-
in_dim=64,
|
| 1323 |
-
mlp_ratio=4,
|
| 1324 |
-
drop_path_rate=0.2,
|
| 1325 |
-
sr_ratio=[1, 1, [2, 1], 1],
|
| 1326 |
-
use_swiglu=False,
|
| 1327 |
-
yolo_arch=True,
|
| 1328 |
-
shuffle_down=False,
|
| 1329 |
-
conv_base=True,
|
| 1330 |
-
use_neck=True,
|
| 1331 |
-
full_features_head_dim=1024,
|
| 1332 |
-
neck_start_stage=2,
|
| 1333 |
-
**kwargs,
|
| 1334 |
-
)
|
| 1335 |
-
if pretrained:
|
| 1336 |
-
model.load_state_dict(torch.load(pretrained))
|
| 1337 |
-
return model
|
| 1338 |
-
|
| 1339 |
-
|
| 1340 |
-
@register_model
|
| 1341 |
-
def fastervit2_base_fullres2(pretrained=False, **kwargs):
|
| 1342 |
-
model = FasterViT(
|
| 1343 |
-
depths=[3, 3, 5, 5],
|
| 1344 |
-
num_heads=[2, 4, 8, 16],
|
| 1345 |
-
window_size=[8, 8, [7, 7], 7],
|
| 1346 |
-
dim=128,
|
| 1347 |
-
in_dim=64,
|
| 1348 |
-
mlp_ratio=4,
|
| 1349 |
-
drop_path_rate=0.2,
|
| 1350 |
-
sr_ratio=[1, 1, [2, 1], 1],
|
| 1351 |
-
use_swiglu=False,
|
| 1352 |
-
yolo_arch=True,
|
| 1353 |
-
shuffle_down=False,
|
| 1354 |
-
conv_base=True,
|
| 1355 |
-
use_neck=True,
|
| 1356 |
-
full_features_head_dim=512,
|
| 1357 |
-
neck_start_stage=1,
|
| 1358 |
-
**kwargs,
|
| 1359 |
-
)
|
| 1360 |
-
if pretrained:
|
| 1361 |
-
model.load_state_dict(torch.load(pretrained))
|
| 1362 |
-
return model
|
| 1363 |
-
|
| 1364 |
-
|
| 1365 |
-
@register_model
|
| 1366 |
-
def fastervit2_base_fullres3(pretrained=False, **kwargs):
|
| 1367 |
-
model = FasterViT(
|
| 1368 |
-
depths=[3, 3, 5, 5],
|
| 1369 |
-
num_heads=[2, 4, 8, 16],
|
| 1370 |
-
window_size=[8, 8, [7, 7], 7],
|
| 1371 |
-
dim=128,
|
| 1372 |
-
in_dim=64,
|
| 1373 |
-
mlp_ratio=4,
|
| 1374 |
-
drop_path_rate=0.2,
|
| 1375 |
-
sr_ratio=[1, 1, [2, 1], 1],
|
| 1376 |
-
use_swiglu=False,
|
| 1377 |
-
yolo_arch=True,
|
| 1378 |
-
shuffle_down=False,
|
| 1379 |
-
conv_base=True,
|
| 1380 |
-
use_neck=True,
|
| 1381 |
-
full_features_head_dim=256,
|
| 1382 |
-
neck_start_stage=1,
|
| 1383 |
-
**kwargs,
|
| 1384 |
-
)
|
| 1385 |
-
if pretrained:
|
| 1386 |
-
model.load_state_dict(torch.load(pretrained))
|
| 1387 |
-
return model
|
| 1388 |
-
|
| 1389 |
-
|
| 1390 |
-
@register_model
|
| 1391 |
-
def fastervit2_base_fullres4(pretrained=False, **kwargs):
|
| 1392 |
-
model = FasterViT(
|
| 1393 |
-
depths=[3, 3, 5, 5],
|
| 1394 |
-
num_heads=[2, 4, 8, 16],
|
| 1395 |
-
window_size=[8, 8, [7, 7], 7],
|
| 1396 |
-
dim=128,
|
| 1397 |
-
in_dim=64,
|
| 1398 |
-
mlp_ratio=4,
|
| 1399 |
-
drop_path_rate=0.2,
|
| 1400 |
-
sr_ratio=[1, 1, [2, 1], 1],
|
| 1401 |
-
use_swiglu=False,
|
| 1402 |
-
yolo_arch=True,
|
| 1403 |
-
shuffle_down=False,
|
| 1404 |
-
conv_base=True,
|
| 1405 |
-
use_neck=True,
|
| 1406 |
-
full_features_head_dim=256,
|
| 1407 |
-
neck_start_stage=2,
|
| 1408 |
-
**kwargs,
|
| 1409 |
-
)
|
| 1410 |
-
if pretrained:
|
| 1411 |
-
model.load_state_dict(torch.load(pretrained))
|
| 1412 |
-
return model
|
| 1413 |
-
|
| 1414 |
-
|
| 1415 |
-
@register_model
|
| 1416 |
-
def fastervit2_base_fullres5(pretrained=False, **kwargs):
|
| 1417 |
-
model = FasterViT(
|
| 1418 |
-
depths=[3, 3, 5, 5],
|
| 1419 |
-
num_heads=[2, 4, 8, 16],
|
| 1420 |
-
window_size=[8, 8, [7, 7], 7],
|
| 1421 |
-
dim=128,
|
| 1422 |
-
in_dim=64,
|
| 1423 |
-
mlp_ratio=4,
|
| 1424 |
-
drop_path_rate=0.2,
|
| 1425 |
-
sr_ratio=[1, 1, [2, 1], 1],
|
| 1426 |
-
use_swiglu=False,
|
| 1427 |
-
yolo_arch=True,
|
| 1428 |
-
shuffle_down=False,
|
| 1429 |
-
conv_base=True,
|
| 1430 |
-
use_neck=True,
|
| 1431 |
-
full_features_head_dim=512,
|
| 1432 |
-
neck_start_stage=2,
|
| 1433 |
-
**kwargs,
|
| 1434 |
-
)
|
| 1435 |
-
if pretrained:
|
| 1436 |
-
model.load_state_dict(torch.load(pretrained))
|
| 1437 |
-
return model
|
| 1438 |
-
|
| 1439 |
-
|
| 1440 |
-
# pyt: 1934, 4202 TRT
|
| 1441 |
-
@register_model
|
| 1442 |
-
def fastervit2_large(pretrained=False, **kwargs):
|
| 1443 |
-
model = FasterViT(
|
| 1444 |
-
depths=[3, 3, 5, 5],
|
| 1445 |
-
num_heads=[2, 4, 8, 16],
|
| 1446 |
-
window_size=[8, 8, [7, 7], 7],
|
| 1447 |
-
dim=128 + 64,
|
| 1448 |
-
in_dim=64,
|
| 1449 |
-
mlp_ratio=4,
|
| 1450 |
-
drop_path_rate=0.2,
|
| 1451 |
-
sr_ratio=[1, 1, [2, 1], 1],
|
| 1452 |
-
use_swiglu=False,
|
| 1453 |
-
yolo_arch=True,
|
| 1454 |
-
shuffle_down=False,
|
| 1455 |
-
**kwargs,
|
| 1456 |
-
)
|
| 1457 |
-
if pretrained:
|
| 1458 |
-
model.load_state_dict(torch.load(pretrained))
|
| 1459 |
-
return model
|
| 1460 |
-
|
| 1461 |
-
|
| 1462 |
-
@register_model
|
| 1463 |
-
def fastervit2_large_fullres(pretrained=False, **kwargs):
|
| 1464 |
-
model = FasterViT(
|
| 1465 |
-
depths=[3, 3, 5, 5],
|
| 1466 |
-
num_heads=[2, 4, 8, 16],
|
| 1467 |
-
window_size=[None, None, [7, 7], 7],
|
| 1468 |
-
dim=192,
|
| 1469 |
-
in_dim=64,
|
| 1470 |
-
mlp_ratio=4,
|
| 1471 |
-
drop_path_rate=0.0,
|
| 1472 |
-
sr_ratio=[1, 1, [2, 1], 1],
|
| 1473 |
-
use_swiglu=False,
|
| 1474 |
-
yolo_arch=True,
|
| 1475 |
-
shuffle_down=False,
|
| 1476 |
-
conv_base=True,
|
| 1477 |
-
use_neck=True,
|
| 1478 |
-
full_features_head_dim=1536,
|
| 1479 |
-
neck_start_stage=2,
|
| 1480 |
-
**kwargs,
|
| 1481 |
-
)
|
| 1482 |
-
if pretrained:
|
| 1483 |
-
model.load_state_dict(torch.load(pretrained))
|
| 1484 |
-
return model
|
| 1485 |
-
|
| 1486 |
-
|
| 1487 |
@register_model
|
| 1488 |
def fastervit2_large_fullres_ws8(pretrained=False, **kwargs):
|
| 1489 |
model = FasterViT(
|
|
@@ -1559,116 +1403,24 @@ def fastervit2_large_fullres_ws32(pretrained=False, **kwargs):
|
|
| 1559 |
return model
|
| 1560 |
|
| 1561 |
|
| 1562 |
-
# pyt: 897
|
| 1563 |
@register_model
|
| 1564 |
-
def
|
| 1565 |
-
|
| 1566 |
-
depths=[3, 3, 5, 5],
|
| 1567 |
-
num_heads=[2, 4, 8, 16],
|
| 1568 |
-
window_size=[8, 8, [7, 7], 7],
|
| 1569 |
-
dim=128 + 128 + 64,
|
| 1570 |
-
in_dim=64,
|
| 1571 |
-
mlp_ratio=4,
|
| 1572 |
-
drop_path_rate=0.2,
|
| 1573 |
-
sr_ratio=[1, 1, [2, 1], 1],
|
| 1574 |
-
use_swiglu=False,
|
| 1575 |
-
yolo_arch=True,
|
| 1576 |
-
shuffle_down=False,
|
| 1577 |
-
**kwargs,
|
| 1578 |
-
)
|
| 1579 |
-
if pretrained:
|
| 1580 |
-
model.load_state_dict(torch.load(pretrained))
|
| 1581 |
-
return model
|
| 1582 |
-
|
| 1583 |
-
|
| 1584 |
-
# pyt:
|
| 1585 |
-
@register_model
|
| 1586 |
-
def fastervit2_huge(pretrained=False, **kwargs):
|
| 1587 |
-
model = FasterViT(
|
| 1588 |
-
depths=[3, 3, 5, 5],
|
| 1589 |
-
num_heads=[2, 4, 8, 16],
|
| 1590 |
-
window_size=[8, 8, [7, 7], 7],
|
| 1591 |
-
dim=128 + 128 + 128 + 64,
|
| 1592 |
-
in_dim=64,
|
| 1593 |
-
mlp_ratio=4,
|
| 1594 |
-
drop_path_rate=0.2,
|
| 1595 |
-
sr_ratio=[1, 1, [2, 1], 1],
|
| 1596 |
-
use_swiglu=False,
|
| 1597 |
-
yolo_arch=True,
|
| 1598 |
-
shuffle_down=False,
|
| 1599 |
-
**kwargs,
|
| 1600 |
-
)
|
| 1601 |
-
if pretrained:
|
| 1602 |
-
model.load_state_dict(torch.load(pretrained))
|
| 1603 |
-
return model
|
| 1604 |
-
|
| 1605 |
-
|
| 1606 |
-
@register_model
|
| 1607 |
-
def fastervit2_xtiny(pretrained=False, **kwargs): # ,
|
| 1608 |
-
model = FasterViT(
|
| 1609 |
-
depths=[1, 3, 4, 5],
|
| 1610 |
-
num_heads=[2, 4, 8, 16],
|
| 1611 |
-
window_size=[8, 8, [7, 7], 7],
|
| 1612 |
-
dim=64,
|
| 1613 |
-
in_dim=64,
|
| 1614 |
-
mlp_ratio=4,
|
| 1615 |
-
drop_path_rate=0.1,
|
| 1616 |
-
sr_ratio=[1, 1, [2, 1], 1],
|
| 1617 |
-
use_swiglu=False,
|
| 1618 |
-
downsample_shuffle=False,
|
| 1619 |
-
yolo_arch=True,
|
| 1620 |
-
shuffle_down=False,
|
| 1621 |
-
**kwargs,
|
| 1622 |
-
)
|
| 1623 |
-
if pretrained:
|
| 1624 |
-
model.load_state_dict(torch.load(pretrained))
|
| 1625 |
-
return model
|
| 1626 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1627 |
|
| 1628 |
-
|
| 1629 |
-
|
| 1630 |
-
|
| 1631 |
-
depths=[1, 3, 4, 5],
|
| 1632 |
-
num_heads=[2, 4, 8, 16],
|
| 1633 |
-
window_size=[8, 8, [7, 7], 7],
|
| 1634 |
-
dim=48,
|
| 1635 |
-
in_dim=64,
|
| 1636 |
-
mlp_ratio=4,
|
| 1637 |
-
drop_path_rate=0.05,
|
| 1638 |
-
sr_ratio=[1, 1, [2, 1], 1],
|
| 1639 |
-
use_swiglu=False,
|
| 1640 |
-
downsample_shuffle=False,
|
| 1641 |
-
yolo_arch=True,
|
| 1642 |
-
shuffle_down=False,
|
| 1643 |
-
**kwargs,
|
| 1644 |
-
)
|
| 1645 |
-
if pretrained:
|
| 1646 |
-
model.load_state_dict(torch.load(pretrained))
|
| 1647 |
-
return model
|
| 1648 |
|
|
|
|
|
|
|
| 1649 |
|
| 1650 |
-
|
| 1651 |
-
|
| 1652 |
-
model = FasterViT(
|
| 1653 |
-
depths=[1, 3, 4, 5],
|
| 1654 |
-
num_heads=[2, 4, 8, 16],
|
| 1655 |
-
window_size=[8, 8, [7, 7], 7],
|
| 1656 |
-
dim=32,
|
| 1657 |
-
in_dim=32,
|
| 1658 |
-
mlp_ratio=4,
|
| 1659 |
-
drop_path_rate=0.0,
|
| 1660 |
-
sr_ratio=[1, 1, [2, 1], 1],
|
| 1661 |
-
use_swiglu=False,
|
| 1662 |
-
downsample_shuffle=False,
|
| 1663 |
-
yolo_arch=True,
|
| 1664 |
-
shuffle_down=False,
|
| 1665 |
-
**kwargs,
|
| 1666 |
-
)
|
| 1667 |
-
if pretrained:
|
| 1668 |
-
model.load_state_dict(torch.load(pretrained))
|
| 1669 |
-
return model
|
| 1670 |
|
| 1671 |
|
| 1672 |
-
|
| 1673 |
-
def eradio(pretrained=False, **kwargs):
|
| 1674 |
-
return fastervit2_large_fullres_ws16(pretrained=pretrained, **kwargs)
|
|
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
|
| 3 |
+
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
|
| 4 |
#
|
| 5 |
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
| 6 |
# and proprietary rights in and to this software, related documentation
|
|
|
|
| 8 |
# distribution of this software and related documentation without an express
|
| 9 |
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
| 10 |
|
| 11 |
+
# E-RADIO (FasterViTv2) model from
|
| 12 |
+
# Mike Ranzinger, Greg Heinrich, Jan Kautz, and Pavlo Molchanov. "AM-RADIO: Agglomerative Model--Reduce All Domains Into One." arXiv preprint arXiv:2312.06709 (2023).
|
| 13 |
+
|
| 14 |
+
# based on FasterViT, Swin Transformer, YOLOv8
|
| 15 |
+
# FasterViT:
|
| 16 |
+
# Ali Hatamizadeh, Greg Heinrich, Hongxu Yin, Andrew Tao, Jose M. Alvarez, Jan Kautz, and Pavlo Molchanov. "FasterViT: Fast Vision Transformers with Hierarchical Attention." arXiv preprint arXiv:2306.06189 (2023).
|
| 17 |
|
| 18 |
import torch
|
| 19 |
import torch.nn as nn
|
|
|
|
| 22 |
from timm.models.layers import trunc_normal_, DropPath, LayerNorm2d
|
| 23 |
import numpy as np
|
| 24 |
import torch.nn.functional as F
|
| 25 |
+
import warnings
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
SIMPLER_UP_TOWER = False
|
| 29 |
+
|
| 30 |
+
#######################
|
| 31 |
+
## Codebase from YOLOv8
|
| 32 |
+
## BEGINNING
|
| 33 |
+
#######################
|
| 34 |
+
|
| 35 |
+
class C2f(nn.Module):
|
| 36 |
+
"""Faster Implementation of CSP Bottleneck with 2 convolutions."""
|
| 37 |
+
"""From YOLOv8 codebase"""
|
| 38 |
+
def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5, drop_path=None): # ch_in, ch_out, number, shortcut, groups, expansion
|
| 39 |
+
super().__init__()
|
| 40 |
+
if drop_path is None:
|
| 41 |
+
drop_path = [0.0] * n
|
| 42 |
+
|
| 43 |
+
self.c = int(c2 * e) # hidden channels
|
| 44 |
+
self.cv1 = Conv(c1, 2 * self.c, 1, 1)
|
| 45 |
+
self.cv2 = Conv((2 + n) * self.c, c2, 1) # optional act=FReLU(c2)
|
| 46 |
+
self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0, drop_path=drop_path[i]) for i in range(n))
|
| 47 |
+
|
| 48 |
+
def forward(self, x):
|
| 49 |
+
"""Forward pass through C2f layer."""
|
| 50 |
+
y = list(self.cv1(x).chunk(2, 1))
|
| 51 |
+
y.extend(m(y[-1]) for m in self.m)
|
| 52 |
+
return self.cv2(torch.cat(y, 1))
|
| 53 |
+
|
| 54 |
+
def forward_split(self, x):
|
| 55 |
+
"""Forward pass using split() instead of chunk()."""
|
| 56 |
+
y = list(self.cv1(x).split((self.c, self.c), 1))
|
| 57 |
+
y.extend(m(y[-1]) for m in self.m)
|
| 58 |
+
return self.cv2(torch.cat(y, 1))
|
| 59 |
+
|
| 60 |
+
class Bottleneck(nn.Module):
|
| 61 |
+
"""Standard bottleneck."""
|
| 62 |
+
|
| 63 |
+
def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5, drop_path=0.0): # ch_in, ch_out, shortcut, groups, kernels, expand
|
| 64 |
+
super().__init__()
|
| 65 |
+
c_ = int(c2 * e) # hidden channels
|
| 66 |
+
self.cv1 = Conv(c1, c_, k[0], 1)
|
| 67 |
+
self.cv2 = Conv(c_, c2, k[1], 1, g=g)
|
| 68 |
+
self.add = shortcut and c1 == c2
|
| 69 |
+
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
| 70 |
+
|
| 71 |
+
def forward(self, x):
|
| 72 |
+
"""'forward()' applies the YOLOv5 FPN to input data."""
|
| 73 |
+
return x + self.drop_path1(self.cv2(self.cv1(x))) if self.add else self.cv2(self.cv1(x))
|
| 74 |
|
|
|
|
| 75 |
|
| 76 |
+
class Conv(nn.Module):
|
| 77 |
+
"""Modified to support layer fusion"""
|
| 78 |
+
default_act = nn.SiLU() # default activation
|
| 79 |
|
| 80 |
+
def __init__(self, a, b, kernel_size=1, stride=1, padding=None, g=1, dilation=1, bn_weight_init=1, bias=False, act=True):
|
| 81 |
+
super().__init__()
|
| 82 |
+
|
| 83 |
+
self.conv = torch.nn.Conv2d(a, b, kernel_size, stride, autopad(kernel_size, padding, dilation), dilation, g, bias=False)
|
| 84 |
+
if 1:
|
| 85 |
+
self.bn = torch.nn.BatchNorm2d(b)
|
| 86 |
+
torch.nn.init.constant_(self.bn.weight, bn_weight_init)
|
| 87 |
+
torch.nn.init.constant_(self.bn.bias, 0)
|
| 88 |
+
self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def forward(self,x):
|
| 92 |
+
x = self.conv(x)
|
| 93 |
+
x = self.bn(x)
|
| 94 |
+
x = self.act(x)
|
| 95 |
+
return x
|
| 96 |
+
|
| 97 |
+
@torch.no_grad()
|
| 98 |
+
def switch_to_deploy(self):
|
| 99 |
+
# return 1
|
| 100 |
+
c, bn = self.conv, self.bn
|
| 101 |
+
w = bn.weight / (bn.running_var + bn.eps) ** 0.5
|
| 102 |
+
w = c.weight * w[:, None, None, None]
|
| 103 |
+
b = bn.bias - bn.running_mean * bn.weight / \
|
| 104 |
+
(bn.running_var + bn.eps)**0.5
|
| 105 |
+
|
| 106 |
+
self.conv.weight.data.copy_(w)
|
| 107 |
+
self.conv.bias = nn.Parameter(b)
|
| 108 |
+
|
| 109 |
+
self.bn = nn.Identity()
|
| 110 |
+
|
| 111 |
+
def autopad(k, p=None, d=1): # kernel, padding, dilation
|
| 112 |
+
"""Pad to 'same' shape outputs."""
|
| 113 |
+
if d > 1:
|
| 114 |
+
k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-size
|
| 115 |
+
if p is None:
|
| 116 |
+
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
|
| 117 |
+
return p
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
#######################
|
| 121 |
+
## Codebase from YOLOv8
|
| 122 |
+
## END
|
| 123 |
+
#######################
|
| 124 |
|
| 125 |
|
| 126 |
def pixel_unshuffle(data, factor=2):
|
|
|
|
| 157 |
else:
|
| 158 |
pad_h = (window_size - H % window_size) % window_size
|
| 159 |
pad_w = (window_size - W % window_size) % window_size
|
| 160 |
+
#interpolate features
|
| 161 |
if pad_h > 0 or pad_w > 0:
|
| 162 |
x = F.pad(x, (0, pad_w, 0, pad_h, 0, 0, 0, 0))
|
| 163 |
Hp, Wp = H + pad_h, W + pad_w
|
|
|
|
| 201 |
|
| 202 |
@torch.no_grad()
|
| 203 |
def switch_to_deploy(self):
|
|
|
|
|
|
|
| 204 |
if not isinstance(self.bn, nn.Identity):
|
| 205 |
c, bn = self.conv, self.bn
|
| 206 |
w = bn.weight / (bn.running_var + bn.eps) ** 0.5
|
|
|
|
| 242 |
|
| 243 |
|
| 244 |
class PosEmbMLPSwinv2D(nn.Module):
|
| 245 |
+
"""
|
| 246 |
+
2D positional embedding from Swin Transformer v2
|
| 247 |
+
Added functionality to store the positional embedding in the model and not recompute it every time
|
| 248 |
+
"""
|
| 249 |
def __init__(
|
| 250 |
+
self, window_size, pretrained_window_size, num_heads, seq_length, no_log=False, cpb_mlp_hidden=512,
|
| 251 |
):
|
| 252 |
super().__init__()
|
| 253 |
self.window_size = window_size
|
| 254 |
self.num_heads = num_heads
|
| 255 |
# mlp to generate continuous relative position bias
|
| 256 |
self.cpb_mlp = nn.Sequential(
|
| 257 |
+
nn.Linear(2, cpb_mlp_hidden, bias=True),
|
| 258 |
nn.ReLU(inplace=True),
|
| 259 |
+
nn.Linear(cpb_mlp_hidden, num_heads, bias=False),
|
| 260 |
)
|
| 261 |
|
| 262 |
+
self.grid_exists = False
|
| 263 |
+
self.seq_length = seq_length
|
| 264 |
+
self.deploy = False
|
| 265 |
+
self.num_heads = num_heads
|
| 266 |
+
self.no_log = no_log
|
| 267 |
+
self.pretrained_window_size = pretrained_window_size
|
| 268 |
+
self.relative_bias_window_size = window_size
|
| 269 |
+
|
| 270 |
+
relative_coords_table, relative_position_index, relative_bias = self.relative_bias_initialization(window_size, num_heads,
|
| 271 |
+
pretrained_window_size, seq_length,
|
| 272 |
+
no_log)
|
| 273 |
+
|
| 274 |
+
self.register_buffer("relative_coords_table", relative_coords_table)
|
| 275 |
+
self.register_buffer("relative_position_index", relative_position_index)
|
| 276 |
+
self.register_buffer("relative_bias", relative_bias) # for EMA
|
| 277 |
+
|
| 278 |
+
def relative_bias_initialization(self, window_size, num_heads, pretrained_window_size, seq_length, no_log):
|
| 279 |
+
# as in separate function to support window size chage after model weights loading
|
| 280 |
+
|
| 281 |
relative_coords_h = torch.arange(
|
| 282 |
+
-(window_size[0] - 1), window_size[0], dtype=torch.float32
|
| 283 |
)
|
| 284 |
relative_coords_w = torch.arange(
|
| 285 |
+
-(window_size[1] - 1), window_size[1], dtype=torch.float32
|
| 286 |
)
|
| 287 |
relative_coords_table = (
|
| 288 |
torch.stack(torch.meshgrid([relative_coords_h, relative_coords_w]))
|
|
|
|
| 305 |
/ np.log2(8)
|
| 306 |
)
|
| 307 |
|
|
|
|
|
|
|
| 308 |
# get pair-wise relative position index for each token inside the window
|
| 309 |
coords_h = torch.arange(self.window_size[0])
|
| 310 |
coords_w = torch.arange(self.window_size[1])
|
|
|
|
| 320 |
relative_coords[:, :, 1] += self.window_size[1] - 1
|
| 321 |
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
|
| 322 |
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
|
|
|
| 323 |
|
| 324 |
+
relative_bias = torch.zeros(1, num_heads, seq_length, seq_length)
|
| 325 |
|
| 326 |
+
self.relative_bias_window_size = window_size
|
| 327 |
+
|
| 328 |
+
return relative_coords_table, relative_position_index, relative_bias
|
| 329 |
|
|
|
|
|
|
|
|
|
|
| 330 |
|
| 331 |
def switch_to_deploy(self):
|
| 332 |
self.deploy = True
|
|
|
|
| 335 |
def forward(self, input_tensor):
|
| 336 |
# for efficiency, we want this forward to be folded into a single operation (sum)
|
| 337 |
# if resolution stays the same, then we dont need to recompute MLP layers
|
|
|
|
|
|
|
|
|
|
|
|
|
| 338 |
|
| 339 |
+
if not self.deploy or self.training:
|
| 340 |
self.grid_exists = False
|
| 341 |
|
| 342 |
+
#compare if all elements in self.window_size list match those in self.relative_bias_window_size
|
| 343 |
+
if not all([self.window_size[i] == self.relative_bias_window_size[i] for i in range(len(self.window_size))]):
|
| 344 |
+
relative_coords_table, relative_position_index, relative_bias = self.relative_bias_initialization(self.window_size, self.num_heads,
|
| 345 |
+
self.pretrained_window_size, self.seq_length,
|
| 346 |
+
self.no_log)
|
| 347 |
+
|
| 348 |
+
self.relative_coords_table = relative_coords_table.to(self.relative_coords_table.device)
|
| 349 |
+
self.relative_position_index = relative_position_index.to(self.relative_position_index.device)
|
| 350 |
+
self.relative_bias = relative_bias.to(self.relative_bias.device)
|
| 351 |
+
|
| 352 |
if self.deploy and self.grid_exists:
|
| 353 |
input_tensor += self.relative_bias
|
| 354 |
return input_tensor
|
| 355 |
|
| 356 |
+
if 1:
|
| 357 |
self.grid_exists = True
|
| 358 |
|
| 359 |
relative_position_bias_table = self.cpb_mlp(
|
|
|
|
| 396 |
conv_base=False,
|
| 397 |
do_windowing=True,
|
| 398 |
multi_query=False,
|
| 399 |
+
cpb_mlp_hidden=512,
|
| 400 |
) -> None:
|
| 401 |
super().__init__()
|
| 402 |
|
| 403 |
+
|
|
|
|
|
|
|
|
|
|
| 404 |
self.do_windowing = do_windowing
|
| 405 |
|
| 406 |
if do_windowing:
|
| 407 |
+
if conv_base:
|
| 408 |
+
self.downsample_op = nn.Conv2d(dim_in, dim_out, kernel_size=subsample_ratio, stride=subsample_ratio) if subsample_ratio > 1 else nn.Identity()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 409 |
self.downsample_mixer = nn.Identity()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 410 |
self.upsample_mixer = nn.Identity()
|
| 411 |
+
self.upsample_op = nn.ConvTranspose2d(dim_in, dim_out, kernel_size=subsample_ratio, stride=subsample_ratio) if subsample_ratio > 1 else nn.Identity()
|
| 412 |
+
else:
|
| 413 |
+
self.downsample_op = nn.AvgPool2d(kernel_size=subsample_ratio, stride=subsample_ratio) if subsample_ratio > 1 else nn.Identity()
|
| 414 |
+
self.downsample_mixer = Conv2d_BN(dim_in, dim_out, kernel_size=1, stride=1) if subsample_ratio > 1 else nn.Identity()
|
| 415 |
+
self.upsample_mixer = nn.Upsample(scale_factor=subsample_ratio, mode='nearest') if subsample_ratio > 1 else nn.Identity()
|
| 416 |
+
self.upsample_op = Conv2d_BN(dim_in, dim_out, kernel_size=1, stride=1, padding=0, bias=False) if subsample_ratio > 1 else nn.Identity()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 417 |
|
| 418 |
self.window_size = window_size
|
| 419 |
|
| 420 |
self.norm1 = norm_layer(dim_in)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 421 |
|
| 422 |
self.attn = WindowAttention(
|
| 423 |
dim_in,
|
| 424 |
+
num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
|
|
|
|
|
|
| 425 |
resolution=window_size,
|
| 426 |
+
seq_length=window_size**2, dim_out=dim_in, multi_query=multi_query,
|
| 427 |
+
cpb_mlp_hidden=cpb_mlp_hidden)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 428 |
|
| 429 |
+
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
| 430 |
|
| 431 |
use_layer_scale = layer_scale is not None and type(layer_scale) in [int, float]
|
| 432 |
+
self.gamma1 = nn.Parameter(layer_scale * torch.ones(dim_in)) if use_layer_scale else 1
|
|
|
|
|
|
|
| 433 |
|
| 434 |
### mlp layer
|
| 435 |
mlp_ratio = 4
|
|
|
|
| 437 |
mlp_hidden_dim = int(dim_in * mlp_ratio)
|
| 438 |
|
| 439 |
activation = nn.GELU if not use_swiglu else SwiGLU
|
| 440 |
+
mlp_hidden_dim = int((4 * dim_in * 1 / 2) / 64) * 64 if use_swiglu else mlp_hidden_dim
|
|
|
|
|
|
|
| 441 |
|
| 442 |
+
self.mlp = Mlp(in_features=dim_in, hidden_features=mlp_hidden_dim, act_layer=activation, use_swiglu=use_swiglu)
|
| 443 |
+
|
| 444 |
+
self.gamma2 = nn.Parameter(layer_scale * torch.ones(dim_in)) if layer_scale else 1
|
| 445 |
+
self.drop_path2=DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
|
|
|
|
|
|
| 446 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 447 |
|
| 448 |
def forward(self, x):
|
| 449 |
skip_connection = x
|
|
|
|
| 516 |
use_swiglu=True,
|
| 517 |
multi_query=False,
|
| 518 |
conv_base=False,
|
| 519 |
+
cpb_mlp_hidden=512
|
| 520 |
) -> None:
|
| 521 |
"""
|
| 522 |
Args:
|
|
|
|
| 555 |
do_windowing=do_windowing,
|
| 556 |
multi_query=multi_query,
|
| 557 |
conv_base=conv_base,
|
| 558 |
+
cpb_mlp_hidden=cpb_mlp_hidden
|
| 559 |
),
|
| 560 |
)
|
| 561 |
|
|
|
|
| 598 |
)
|
| 599 |
self.act = act_layer()
|
| 600 |
self.fc2 = nn.Linear(hidden_features, out_features, bias=False)
|
|
|
|
| 601 |
|
| 602 |
def forward(self, x):
|
| 603 |
x_size = x.size()
|
| 604 |
x = x.view(-1, x_size[-1])
|
| 605 |
x = self.fc1(x)
|
| 606 |
x = self.act(x)
|
|
|
|
| 607 |
x = self.fc2(x)
|
|
|
|
| 608 |
x = x.view(x_size)
|
| 609 |
return x
|
| 610 |
|
|
|
|
| 622 |
"""
|
| 623 |
Args:
|
| 624 |
dim: feature size dimension.
|
| 625 |
+
shuffle: idea with pixel unshuffling instead for resizing
|
| 626 |
keep_dim: bool argument for maintaining the resolution.
|
| 627 |
"""
|
| 628 |
|
|
|
|
| 633 |
self.norm = lambda x: pixel_unshuffle(x, factor=2)
|
| 634 |
self.reduction = Conv2d_BN(dim * 4, dim_out, 1, 1, 0, bias=False)
|
| 635 |
else:
|
|
|
|
|
|
|
| 636 |
self.norm = nn.Identity()
|
| 637 |
self.reduction = Conv2d_BN(dim, dim_out, 3, 2, 1, bias=False)
|
| 638 |
|
|
|
|
| 645 |
class PatchEmbed(nn.Module):
|
| 646 |
"""
|
| 647 |
Patch embedding block
|
| 648 |
+
Used to convert image into an initial set of feature maps with lower resolution
|
| 649 |
+
|
| 650 |
"""
|
| 651 |
|
| 652 |
def __init__(self, in_chans=3, in_dim=64, dim=96, shuffle_down=False):
|
|
|
|
| 670 |
)
|
| 671 |
else:
|
| 672 |
self.proj = lambda x: pixel_unshuffle(x, factor=4)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 673 |
self.conv_down = nn.Sequential(
|
| 674 |
Conv2d_BN(in_chans * 16, dim, 3, 1, 1), nn.ReLU(),
|
| 675 |
)
|
|
|
|
| 684 |
"""
|
| 685 |
Convolutional block, used in first couple of stages
|
| 686 |
Experimented with plan resnet-18 like modules, they are the best in terms of throughput
|
|
|
|
| 687 |
Finally, YOLOv8 idea seem to work fine (resnet-18 like block with squeezed feature dimension, and feature concatendation at the end)
|
| 688 |
"""
|
| 689 |
+
def __init__(self, dim,
|
| 690 |
+
drop_path=0.,
|
| 691 |
+
layer_scale=None,
|
| 692 |
+
kernel_size=3,
|
| 693 |
+
):
|
| 694 |
super().__init__()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 695 |
|
| 696 |
+
self.conv1 = Conv2d_BN(dim, dim, kernel_size=kernel_size, stride=1, padding=1)
|
| 697 |
+
self.act1 = nn.GELU()
|
| 698 |
+
|
| 699 |
+
self.conv2 = Conv2d_BN(dim, dim, kernel_size=kernel_size, stride=1, padding=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 700 |
|
| 701 |
self.layer_scale = layer_scale
|
| 702 |
if layer_scale is not None and type(layer_scale) in [int, float]:
|
|
|
|
| 704 |
self.layer_scale = True
|
| 705 |
else:
|
| 706 |
self.layer_scale = False
|
| 707 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
| 708 |
|
| 709 |
def forward(self, x):
|
| 710 |
input = x
|
| 711 |
+
|
| 712 |
+
x = self.conv1(x)
|
| 713 |
+
x = self.act1(x)
|
| 714 |
+
x = self.conv2(x)
|
| 715 |
+
|
|
|
|
|
|
|
| 716 |
if self.layer_scale:
|
| 717 |
x = x * self.gamma.view(1, -1, 1, 1)
|
| 718 |
x = input + self.drop_path(x)
|
|
|
|
| 722 |
class WindowAttention(nn.Module):
|
| 723 |
# Windowed Attention from SwinV2
|
| 724 |
# use a MLP trick to deal with various input image resolutions, then fold it to improve speed
|
|
|
|
|
|
|
|
|
|
| 725 |
|
| 726 |
def __init__(
|
| 727 |
self,
|
|
|
|
| 733 |
seq_length=0,
|
| 734 |
dim_out=None,
|
| 735 |
multi_query=False,
|
| 736 |
+
cpb_mlp_hidden=512,
|
| 737 |
):
|
| 738 |
# taken from EdgeViT and tweaked with attention bias.
|
| 739 |
super().__init__()
|
|
|
|
| 748 |
|
| 749 |
self.scale = qk_scale or head_dim ** -0.5
|
| 750 |
if not multi_query:
|
| 751 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 752 |
else:
|
| 753 |
self.qkv = nn.Linear(dim, dim + 2 * self.head_dim, bias=qkv_bias)
|
| 754 |
|
|
|
|
| 759 |
pretrained_window_size=[resolution, resolution],
|
| 760 |
num_heads=num_heads,
|
| 761 |
seq_length=seq_length,
|
| 762 |
+
cpb_mlp_hidden=cpb_mlp_hidden,
|
| 763 |
)
|
| 764 |
|
| 765 |
self.resolution = resolution
|
|
|
|
| 768 |
B, N, C = x.shape
|
| 769 |
|
| 770 |
if not self.multi_query:
|
| 771 |
+
qkv = (
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 772 |
self.qkv(x)
|
| 773 |
.reshape(B, -1, 3, self.num_heads, C // self.num_heads)
|
| 774 |
.permute(2, 0, 3, 1, 4)
|
| 775 |
)
|
| 776 |
+
q, k, v = qkv[0], qkv[1], qkv[2]
|
| 777 |
else:
|
| 778 |
qkv = self.qkv(x)
|
| 779 |
(q, k, v) = qkv.split(
|
|
|
|
| 820 |
sr_ratio=1,
|
| 821 |
multi_query=False,
|
| 822 |
use_swiglu=True,
|
|
|
|
| 823 |
yolo_arch=False,
|
| 824 |
downsample_shuffle=False,
|
| 825 |
conv_base=False,
|
| 826 |
+
cpb_mlp_hidden=512,
|
| 827 |
):
|
| 828 |
"""
|
| 829 |
Args:
|
|
|
|
| 855 |
drop_path=drop_path[i]
|
| 856 |
if isinstance(drop_path, list)
|
| 857 |
else drop_path,
|
| 858 |
+
layer_scale=layer_scale_conv )
|
|
|
|
|
|
|
| 859 |
for i in range(depth)
|
| 860 |
]
|
| 861 |
)
|
| 862 |
+
self.blocks = nn.Sequential(*self.blocks)
|
| 863 |
else:
|
| 864 |
self.blocks = C2f(dim, dim, n=depth, shortcut=True, e=0.5)
|
| 865 |
self.yolo_arch = True
|
|
|
|
| 870 |
self.do_single_windowing = True
|
| 871 |
if not isinstance(sr_ratio, list):
|
| 872 |
sr_ratio = [sr_ratio]
|
| 873 |
+
self.sr_ratio = sr_ratio
|
| 874 |
if any([sr != 1 for sr in sr_ratio]) or len(set(window_size)) > 1:
|
| 875 |
self.do_single_windowing = False
|
| 876 |
do_windowing = True
|
|
|
|
| 899 |
do_windowing=do_windowing,
|
| 900 |
multi_query=multi_query,
|
| 901 |
conv_base=conv_base,
|
| 902 |
+
cpb_mlp_hidden=cpb_mlp_hidden,
|
| 903 |
)
|
| 904 |
)
|
| 905 |
|
| 906 |
+
self.blocks = nn.Sequential(*self.blocks)
|
| 907 |
+
|
| 908 |
self.transformer = not conv
|
| 909 |
|
| 910 |
self.downsample = (
|
| 911 |
None if not downsample else Downsample(dim=dim, shuffle=downsample_shuffle)
|
| 912 |
)
|
| 913 |
|
| 914 |
+
|
| 915 |
def forward(self, x):
|
| 916 |
B, C, H, W = x.shape
|
| 917 |
|
| 918 |
+
# do padding for transforemr
|
| 919 |
+
interpolate = True
|
| 920 |
+
if self.transformer and interpolate:
|
| 921 |
+
# Windowed Attention will split feature map into windows with the size of window_size x window_size
|
| 922 |
+
# if the resolution is not divisible by window_size, we need to interpolate the feature map
|
| 923 |
+
# can be done via padding, but doing so after training hurts the model performance.
|
| 924 |
+
# interpolation affects the performance as well, but not as much as padding
|
| 925 |
+
if isinstance(self.window_size, list) or isinstance(self.window_size, tuple):
|
| 926 |
+
current_max_window_size = max(self.window_size)
|
| 927 |
+
else:
|
| 928 |
+
current_max_window_size = self.window_size
|
| 929 |
+
|
| 930 |
+
max_window_size = max([res_upsample*current_max_window_size for res_upsample in self.sr_ratio])
|
| 931 |
+
if H % max_window_size != 0 or W % max_window_size != 0:
|
| 932 |
+
new_h = int(np.ceil(H/max_window_size)*max_window_size)
|
| 933 |
+
new_w = int(np.ceil(W/max_window_size)*max_window_size)
|
| 934 |
+
x = F.interpolate(x, size=(new_h, new_w), mode='nearest')
|
| 935 |
+
warnings.warn(f"Choosen window size is not optimal for given resolution. Interpolation of features maps will be done and it can affect the performance. Max window size is {max_window_size}, feature map size is {H}x{W}, interpolated feature map size is {new_h}x{new_w}.")
|
| 936 |
+
|
| 937 |
+
|
| 938 |
if self.transformer and self.do_single_windowing:
|
| 939 |
H, W = x.shape[2], x.shape[3]
|
| 940 |
x, pad_hw = window_partition(x, self.window_size)
|
| 941 |
|
| 942 |
+
x = self.blocks(x)
|
| 943 |
+
# if not self.yolo_arch:
|
| 944 |
+
# for bn, blk in enumerate(self.blocks):
|
| 945 |
+
# x = blk(x)
|
| 946 |
+
# else:
|
| 947 |
+
# x = self.blocks(x)
|
| 948 |
|
| 949 |
if self.transformer and self.do_single_windowing:
|
| 950 |
x = window_reverse(x, self.window_size, H, W, pad_hw)
|
| 951 |
|
| 952 |
+
if self.transformer and interpolate:
|
| 953 |
+
#lets keep original resolution, might be not ideal, but for the upsampling tower we need to keep the expected resolution.
|
| 954 |
+
x = F.interpolate(x, size=(H, W), mode='nearest')
|
| 955 |
+
|
| 956 |
if self.downsample is None:
|
| 957 |
return x, x
|
| 958 |
|
| 959 |
return self.downsample(x), x # changing to output pre downsampled features
|
| 960 |
|
| 961 |
|
| 962 |
+
class HiResNeck(nn.Module):
|
| 963 |
+
"""
|
| 964 |
+
The block is used to output dense features from all stages
|
| 965 |
+
Otherwise, by default, only the last stage features are returned with FasterViTv2
|
| 966 |
+
"""
|
| 967 |
+
def __init__(self, dim, depths, neck_start_stage, full_features_head_dim):
|
| 968 |
+
|
| 969 |
+
'''
|
| 970 |
+
Hi Resolution neck to support output of high res features that are useful for dense tasks.
|
| 971 |
+
depths - total number of layers in the base model
|
| 972 |
+
neck_start_stage - when to start the neck, 0 - start from the first stage, 1 - start from the second stage etc.
|
| 973 |
+
earlier layers result in higher resolution features at the cost of compute
|
| 974 |
+
full_features_head_dim - number of channels in the dense features head
|
| 975 |
+
'''
|
| 976 |
+
# create feature projection layers for segmentation output
|
| 977 |
+
self.neck_features_proj = nn.ModuleList()
|
| 978 |
+
self.neck_start_stage = neck_start_stage
|
| 979 |
+
upsample_ratio = 1
|
| 980 |
+
for i in range(len(depths)):
|
| 981 |
+
level_n_features_output = int(dim * 2 ** i)
|
| 982 |
+
|
| 983 |
+
if self.neck_start_stage > i: continue
|
| 984 |
+
|
| 985 |
+
if (upsample_ratio > 1) or full_features_head_dim!=level_n_features_output:
|
| 986 |
+
feature_projection = nn.Sequential()
|
| 987 |
+
feature_projection.add_module("norm",nn.BatchNorm2d(level_n_features_output)) #fast, but worse
|
| 988 |
+
|
| 989 |
+
feature_projection.add_module("dconv", nn.ConvTranspose2d(level_n_features_output,
|
| 990 |
+
full_features_head_dim, kernel_size=upsample_ratio, stride=upsample_ratio))
|
| 991 |
+
else:
|
| 992 |
+
feature_projection = nn.Sequential()
|
| 993 |
+
|
| 994 |
+
self.neck_features_proj.append(feature_projection)
|
| 995 |
+
|
| 996 |
+
if i>0 and self.levels[i-1].downsample is not None:
|
| 997 |
+
upsample_ratio *= 2
|
| 998 |
+
|
| 999 |
+
def forward(self, x, il_level=-1, full_features=None):
|
| 1000 |
+
if self.neck_start_stage > il_level:
|
| 1001 |
+
return full_features
|
| 1002 |
+
|
| 1003 |
+
if full_features is None:
|
| 1004 |
+
full_features = self.neck_features_proj[il_level - self.neck_start_stage](x)
|
| 1005 |
+
else:
|
| 1006 |
+
#upsample torch tensor x to match full_features size, and add to full_features
|
| 1007 |
+
feature_projection = self.neck_features_proj[il_level - self.neck_start_stage](x)
|
| 1008 |
+
if feature_projection.shape[2] != full_features.shape[2] or feature_projection.shape[3] != full_features.shape[3]:
|
| 1009 |
+
feature_projection = torch.nn.functional.pad(feature_projection, ( 0, -feature_projection.shape[3] + full_features.shape[3], 0, -feature_projection.shape[2] + full_features.shape[2]))
|
| 1010 |
+
full_features += feature_projection
|
| 1011 |
+
return full_features
|
| 1012 |
+
|
| 1013 |
+
|
| 1014 |
+
|
| 1015 |
class FasterViT(nn.Module):
|
| 1016 |
"""
|
| 1017 |
FasterViT
|
|
|
|
| 1039 |
use_swiglu=False,
|
| 1040 |
multi_query=False,
|
| 1041 |
norm_layer=nn.LayerNorm,
|
|
|
|
| 1042 |
drop_uniform=False,
|
| 1043 |
yolo_arch=False,
|
| 1044 |
shuffle_down=False,
|
|
|
|
| 1047 |
full_features_head_dim=128,
|
| 1048 |
neck_start_stage=1,
|
| 1049 |
use_neck=False,
|
| 1050 |
+
cpb_mlp_hidden=512,
|
| 1051 |
**kwargs,
|
| 1052 |
):
|
| 1053 |
"""
|
|
|
|
| 1112 |
use_swiglu=use_swiglu,
|
| 1113 |
multi_query=multi_query,
|
| 1114 |
norm_layer=norm_layer,
|
|
|
|
| 1115 |
yolo_arch=yolo_arch,
|
| 1116 |
downsample_shuffle=downsample_shuffle,
|
| 1117 |
conv_base=conv_base,
|
| 1118 |
+
cpb_mlp_hidden=cpb_mlp_hidden,
|
| 1119 |
+
|
| 1120 |
)
|
| 1121 |
|
| 1122 |
self.levels.append(level)
|
| 1123 |
|
| 1124 |
+
if not SIMPLER_UP_TOWER:
|
| 1125 |
+
if self.return_full_features or self.use_neck:
|
| 1126 |
+
# create feature projection layers for segmentation output
|
| 1127 |
+
self.neck_features_proj = nn.ModuleList()
|
| 1128 |
+
self.neck_start_stage = neck_start_stage
|
| 1129 |
+
upsample_ratio = 1
|
| 1130 |
+
for i in range(len(depths)):
|
| 1131 |
+
level_n_features_output = int(dim * 2 ** i)
|
| 1132 |
+
|
| 1133 |
+
if self.neck_start_stage > i:
|
| 1134 |
+
continue
|
| 1135 |
+
|
| 1136 |
+
if (
|
| 1137 |
+
upsample_ratio > 1
|
| 1138 |
+
) or full_features_head_dim != level_n_features_output:
|
| 1139 |
+
feature_projection = nn.Sequential()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1140 |
# pixel shuffle based upsampling
|
|
|
|
| 1141 |
feature_projection.add_module(
|
| 1142 |
"norm", nn.BatchNorm2d(level_n_features_output)
|
| 1143 |
) # fast, but worse
|
|
|
|
| 1155 |
feature_projection.add_module(
|
| 1156 |
"upsample_pixelshuffle", nn.PixelShuffle(upsample_ratio)
|
| 1157 |
)
|
| 1158 |
+
else:
|
| 1159 |
+
feature_projection = nn.Sequential()
|
| 1160 |
+
feature_projection.add_module(
|
| 1161 |
+
"norm", nn.BatchNorm2d(level_n_features_output)
|
| 1162 |
+
)
|
| 1163 |
|
| 1164 |
+
self.neck_features_proj.append(feature_projection)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1165 |
|
| 1166 |
+
if i > 0 and self.levels[i - 1].downsample is not None:
|
| 1167 |
+
upsample_ratio *= 2
|
| 1168 |
+
else:
|
| 1169 |
+
if self.return_full_features or self.use_neck:
|
| 1170 |
+
self.high_res_neck = HiResNeck(dim, num_heads, depths, neck_start_stage, full_features_head_dim)
|
| 1171 |
|
| 1172 |
num_features = (
|
| 1173 |
full_features_head_dim
|
|
|
|
| 1204 |
nn.init.ones_(m.weight)
|
| 1205 |
nn.init.zeros_(m.bias)
|
| 1206 |
|
| 1207 |
+
def change_window_size(self, new_window_size):
|
| 1208 |
+
"""
|
| 1209 |
+
FasterViT uses windowed attention, it might be sensative to the choiuce of this parameter
|
| 1210 |
+
especially in case of eneven partitioning of the feature maps.
|
| 1211 |
+
FasterViT allows changing the window size post training.
|
| 1212 |
+
Therefore it should be changed with different input image resolution.
|
| 1213 |
+
Recommended values:
|
| 1214 |
+
input res | window_size
|
| 1215 |
+
224 | 7
|
| 1216 |
+
256 | 8
|
| 1217 |
+
386 | 12
|
| 1218 |
+
512 | 16
|
| 1219 |
+
Ideally, window_size should be a factor of the input resolution. In the third stage we divide the resolution by 16, so window_size should be img_res/16/2 for the third stage and img_res/32 for the last stage.
|
| 1220 |
+
Applying in the brute force way, can be done smarter
|
| 1221 |
+
"""
|
| 1222 |
+
window_size = new_window_size
|
| 1223 |
+
|
| 1224 |
+
for module in self.modules():
|
| 1225 |
+
if hasattr(module, "window_size"):
|
| 1226 |
+
# check if tuple or a number
|
| 1227 |
+
if isinstance(module.window_size, tuple):
|
| 1228 |
+
if module.window_size[0] != window_size:
|
| 1229 |
+
module.window_size = (window_size, window_size)
|
| 1230 |
+
elif isinstance(module.window_size, list):
|
| 1231 |
+
if module.window_size[0] != window_size:
|
| 1232 |
+
module.window_size = [window_size, window_size]
|
| 1233 |
+
else:
|
| 1234 |
+
module.window_size = window_size
|
| 1235 |
+
|
| 1236 |
+
def set_optimal_window_size(self, image_dim):
|
| 1237 |
+
"""
|
| 1238 |
+
Using hand picked window size for various resolutions.
|
| 1239 |
+
"""
|
| 1240 |
+
if isinstance(image_dim, list) or isinstance(image_dim, tuple):
|
| 1241 |
+
image_dim = min(image_dim)
|
| 1242 |
+
|
| 1243 |
+
if image_dim == 224:
|
| 1244 |
+
new_window_size = 7
|
| 1245 |
+
elif image_dim == 256:
|
| 1246 |
+
new_window_size = 8
|
| 1247 |
+
elif image_dim == 384:
|
| 1248 |
+
new_window_size = 12
|
| 1249 |
+
elif image_dim == 512:
|
| 1250 |
+
new_window_size = 16
|
| 1251 |
+
else:
|
| 1252 |
+
if image_dim < 512:
|
| 1253 |
+
new_window_size = np.ceil(image_dim / 32)
|
| 1254 |
+
else:
|
| 1255 |
+
new_window_size = 16
|
| 1256 |
+
|
| 1257 |
+
print(f"Changing window size to {new_window_size}")
|
| 1258 |
+
self.change_window_size(new_window_size = new_window_size)
|
| 1259 |
+
|
| 1260 |
+
|
| 1261 |
@torch.jit.ignore
|
| 1262 |
def no_weight_decay_keywords(self):
|
| 1263 |
return {"rpb"}
|
|
|
|
| 1269 |
x, pre_downsample_x = level(x)
|
| 1270 |
|
| 1271 |
if self.return_full_features or self.use_neck:
|
| 1272 |
+
if not SIMPLER_UP_TOWER:
|
| 1273 |
+
if self.neck_start_stage > il:
|
| 1274 |
+
continue
|
| 1275 |
+
if full_features is None:
|
| 1276 |
+
full_features = self.neck_features_proj[il - self.neck_start_stage](
|
| 1277 |
+
pre_downsample_x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1278 |
)
|
| 1279 |
+
else:
|
| 1280 |
+
# upsample torch tensor x to match full_features size, and add to full_features
|
| 1281 |
+
feature_projection = self.neck_features_proj[
|
| 1282 |
+
il - self.neck_start_stage
|
| 1283 |
+
](pre_downsample_x)
|
| 1284 |
+
if (
|
| 1285 |
+
feature_projection.shape[2] != full_features.shape[2]
|
| 1286 |
+
or feature_projection.shape[3] != full_features.shape[3]
|
| 1287 |
+
):
|
| 1288 |
+
feature_projection = torch.nn.functional.pad(
|
| 1289 |
+
feature_projection,
|
| 1290 |
+
(
|
| 1291 |
+
0,
|
| 1292 |
+
-feature_projection.shape[3] + full_features.shape[3],
|
| 1293 |
+
0,
|
| 1294 |
+
-feature_projection.shape[2] + full_features.shape[2],
|
| 1295 |
+
),
|
| 1296 |
+
)
|
| 1297 |
+
full_features += feature_projection
|
| 1298 |
+
else:
|
| 1299 |
+
full_features = self.high_res_neck(pre_downsample_x, il, full_features)
|
| 1300 |
|
|
|
|
| 1301 |
x = self.norm(x) # new version for
|
| 1302 |
+
|
| 1303 |
x = self.avgpool(x)
|
| 1304 |
x = torch.flatten(x, 1)
|
| 1305 |
|
|
|
|
| 1309 |
return x, full_features
|
| 1310 |
|
| 1311 |
def forward(self, x):
|
| 1312 |
+
|
| 1313 |
x, full_features = self.forward_features(x)
|
| 1314 |
+
|
| 1315 |
x = self.head(x)
|
| 1316 |
if full_features is not None:
|
| 1317 |
return x, full_features
|
|
|
|
| 1328 |
if hasattr(module, "switch_to_deploy"):
|
| 1329 |
module.switch_to_deploy()
|
| 1330 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1331 |
@register_model
|
| 1332 |
def fastervit2_large_fullres_ws8(pretrained=False, **kwargs):
|
| 1333 |
model = FasterViT(
|
|
|
|
| 1403 |
return model
|
| 1404 |
|
| 1405 |
|
|
|
|
| 1406 |
@register_model
|
| 1407 |
+
def eradio(pretrained=False, **kwargs):
|
| 1408 |
+
return fastervit2_large_fullres_ws16(pretrained=pretrained, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1409 |
|
| 1410 |
+
'''
|
| 1411 |
+
Suggested way to use:
|
| 1412 |
+
from transformers import AutoModel
|
| 1413 |
+
model = AutoModel.from_pretrained("nvidia/E-RADIO", trust_remote_code=True)
|
| 1414 |
|
| 1415 |
+
model.model.set_optimal_window_size(image_dim = data["image"][0].shape[:2])
|
| 1416 |
+
imgs = [torch.tensor(img).permute(2,0,1)/255.0 for img in data["image"]] #res is 224
|
| 1417 |
+
input_images = torch.stack(imgs).cuda()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1418 |
|
| 1419 |
+
model.eval()
|
| 1420 |
+
model.cuda()
|
| 1421 |
|
| 1422 |
+
cls_token, features = model(input_images)
|
| 1423 |
+
cls_token = features.mean([2, 3])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1424 |
|
| 1425 |
|
| 1426 |
+
'''
|
|
|
|
|
|
hf_model.py
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
|
| 2 |
#
|
| 3 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
# you may not use this file except in compliance with the License.
|
|
@@ -14,7 +14,6 @@
|
|
| 14 |
from collections import namedtuple
|
| 15 |
from typing import Optional
|
| 16 |
|
| 17 |
-
from einops import rearrange
|
| 18 |
from timm.models import VisionTransformer
|
| 19 |
import torch
|
| 20 |
from transformers import PretrainedConfig, PreTrainedModel
|
|
|
|
| 1 |
+
# Copyright (c) 2023-2024, NVIDIA CORPORATION. All rights reserved.
|
| 2 |
#
|
| 3 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
# you may not use this file except in compliance with the License.
|
|
|
|
| 14 |
from collections import namedtuple
|
| 15 |
from typing import Optional
|
| 16 |
|
|
|
|
| 17 |
from timm.models import VisionTransformer
|
| 18 |
import torch
|
| 19 |
from transformers import PretrainedConfig, PreTrainedModel
|
input_conditioner.py
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
|
| 2 |
#
|
| 3 |
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
| 4 |
# and proprietary rights in and to this software, related documentation
|
|
|
|
| 1 |
+
# Copyright (c) 2023-2024, NVIDIA CORPORATION. All rights reserved.
|
| 2 |
#
|
| 3 |
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
| 4 |
# and proprietary rights in and to this software, related documentation
|
pytorch_model.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 1105844337
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fc6244a274d1479e33f4779949f98cefeb3108b77fdc9b79c33b92295c5141d4
|
| 3 |
size 1105844337
|
radio_model.py
CHANGED
|
@@ -1,10 +1,11 @@
|
|
| 1 |
-
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
|
| 2 |
#
|
| 3 |
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
| 4 |
# and proprietary rights in and to this software, related documentation
|
| 5 |
# and any modifications thereto. Any use, reproduction, disclosure or
|
| 6 |
# distribution of this software and related documentation without an express
|
| 7 |
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
|
|
|
| 8 |
|
| 9 |
import torch
|
| 10 |
from torch import nn
|
|
@@ -13,6 +14,8 @@ from timm.models import create_model, VisionTransformer
|
|
| 13 |
|
| 14 |
from .enable_cpe_support import enable_cpe
|
| 15 |
from .input_conditioner import InputConditioner
|
|
|
|
|
|
|
| 16 |
|
| 17 |
|
| 18 |
class RADIOModel(nn.Module):
|
|
@@ -22,6 +25,7 @@ class RADIOModel(nn.Module):
|
|
| 22 |
input_conditioner: InputConditioner,
|
| 23 |
return_summary: bool,
|
| 24 |
return_spatial_features: bool,
|
|
|
|
| 25 |
):
|
| 26 |
super().__init__()
|
| 27 |
|
|
@@ -29,6 +33,24 @@ class RADIOModel(nn.Module):
|
|
| 29 |
self.input_conditioner = input_conditioner
|
| 30 |
self.return_summary = return_summary
|
| 31 |
self.return_spatial_features = return_spatial_features
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
def forward(self, x: torch.Tensor):
|
| 34 |
x = self.input_conditioner(x)
|
|
@@ -40,7 +62,13 @@ class RADIOModel(nn.Module):
|
|
| 40 |
elif isinstance(self.model, VisionTransformer):
|
| 41 |
patch_gen = getattr(self.model, "patch_generator", None)
|
| 42 |
if patch_gen is not None:
|
| 43 |
-
summary = y[:, : patch_gen.num_cls_tokens]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
all_feat = y[:, patch_gen.num_skip :]
|
| 45 |
elif self.model.global_pool == "avg":
|
| 46 |
summary = y[:, self.model.num_prefix_tokens :].mean(dim=1)
|
|
@@ -51,7 +79,7 @@ class RADIOModel(nn.Module):
|
|
| 51 |
else:
|
| 52 |
raise ValueError("Unsupported model type")
|
| 53 |
|
| 54 |
-
if self.
|
| 55 |
return summary, all_feat
|
| 56 |
elif self.return_summary:
|
| 57 |
return summary
|
|
|
|
| 1 |
+
# Copyright (c) 2023-2024, NVIDIA CORPORATION. All rights reserved.
|
| 2 |
#
|
| 3 |
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
| 4 |
# and proprietary rights in and to this software, related documentation
|
| 5 |
# and any modifications thereto. Any use, reproduction, disclosure or
|
| 6 |
# distribution of this software and related documentation without an express
|
| 7 |
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
| 8 |
+
from typing import Optional
|
| 9 |
|
| 10 |
import torch
|
| 11 |
from torch import nn
|
|
|
|
| 14 |
|
| 15 |
from .enable_cpe_support import enable_cpe
|
| 16 |
from .input_conditioner import InputConditioner
|
| 17 |
+
# Register extra models
|
| 18 |
+
from . import extra_timm_models
|
| 19 |
|
| 20 |
|
| 21 |
class RADIOModel(nn.Module):
|
|
|
|
| 25 |
input_conditioner: InputConditioner,
|
| 26 |
return_summary: bool,
|
| 27 |
return_spatial_features: bool,
|
| 28 |
+
summary_idxs: Optional[torch.Tensor] = None,
|
| 29 |
):
|
| 30 |
super().__init__()
|
| 31 |
|
|
|
|
| 33 |
self.input_conditioner = input_conditioner
|
| 34 |
self.return_summary = return_summary
|
| 35 |
self.return_spatial_features = return_spatial_features
|
| 36 |
+
self.summary_select_idx = -1
|
| 37 |
+
if summary_idxs is not None:
|
| 38 |
+
self.register_buffer('summary_idxs', summary_idxs)
|
| 39 |
+
else:
|
| 40 |
+
self.summary_idxs = None
|
| 41 |
+
|
| 42 |
+
@property
|
| 43 |
+
def return_both(self):
|
| 44 |
+
return self.return_summary and self.return_spatial_features
|
| 45 |
+
|
| 46 |
+
@property
|
| 47 |
+
def num_summary_tokens(self):
|
| 48 |
+
patch_gen = getattr(self.model, "patch_generator", None)
|
| 49 |
+
if patch_gen is not None:
|
| 50 |
+
return patch_gen.num_skip
|
| 51 |
+
elif self.model.global_pool == 'avg':
|
| 52 |
+
return 0
|
| 53 |
+
return 1
|
| 54 |
|
| 55 |
def forward(self, x: torch.Tensor):
|
| 56 |
x = self.input_conditioner(x)
|
|
|
|
| 62 |
elif isinstance(self.model, VisionTransformer):
|
| 63 |
patch_gen = getattr(self.model, "patch_generator", None)
|
| 64 |
if patch_gen is not None:
|
| 65 |
+
summary = y[:, : patch_gen.num_cls_tokens]
|
| 66 |
+
if self.summary_select_idx >= 0:
|
| 67 |
+
summary = summary[:, self.summary_select_idx]
|
| 68 |
+
elif self.summary_idxs is not None:
|
| 69 |
+
summary = summary[:, self.summary_idxs].flatten(1)
|
| 70 |
+
else:
|
| 71 |
+
summary = summary.flatten(1)
|
| 72 |
all_feat = y[:, patch_gen.num_skip :]
|
| 73 |
elif self.model.global_pool == "avg":
|
| 74 |
summary = y[:, self.model.num_prefix_tokens :].mean(dim=1)
|
|
|
|
| 79 |
else:
|
| 80 |
raise ValueError("Unsupported model type")
|
| 81 |
|
| 82 |
+
if self.return_both:
|
| 83 |
return summary, all_feat
|
| 84 |
elif self.return_summary:
|
| 85 |
return summary
|
vit_patch_generator.py
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
|
| 2 |
#
|
| 3 |
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
| 4 |
# and proprietary rights in and to this software, related documentation
|
|
@@ -224,12 +224,12 @@ class ViTPatchGenerator(nn.Module):
|
|
| 224 |
grid_xy.mul_(2).sub_(1)
|
| 225 |
|
| 226 |
pos_embed = F.grid_sample(
|
| 227 |
-
pos_embed.expand(batch_size, -1, -1, -1),
|
| 228 |
grid=grid_xy,
|
| 229 |
mode='bilinear',
|
| 230 |
padding_mode='zeros',
|
| 231 |
align_corners=True,
|
| 232 |
-
)
|
| 233 |
else:
|
| 234 |
# i_rows, i_cols = input_dims
|
| 235 |
# p_rows, p_cols = pos_embed.shape[2:]
|
|
|
|
| 1 |
+
# Copyright (c) 2023-2024, NVIDIA CORPORATION. All rights reserved.
|
| 2 |
#
|
| 3 |
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
| 4 |
# and proprietary rights in and to this software, related documentation
|
|
|
|
| 224 |
grid_xy.mul_(2).sub_(1)
|
| 225 |
|
| 226 |
pos_embed = F.grid_sample(
|
| 227 |
+
pos_embed.float().expand(batch_size, -1, -1, -1),
|
| 228 |
grid=grid_xy,
|
| 229 |
mode='bilinear',
|
| 230 |
padding_mode='zeros',
|
| 231 |
align_corners=True,
|
| 232 |
+
).to(pos_embed.dtype)
|
| 233 |
else:
|
| 234 |
# i_rows, i_cols = input_dims
|
| 235 |
# p_rows, p_cols = pos_embed.shape[2:]
|