--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity license: cc-by-4.0 datasets: - nuvocare/WikiMedical_sentence_similarity language: - en --- # WikiMedical_sent_bert This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. WikiMedical_sent_bert is based on the 'all-MiniLM-L6-v2' sentence-transformers backbone and has been trained on the [WikiMedical_sentence_simialrity](https://huggingface.co/datasets/nuvocare/WikiMedical_sentence_similarity) dataset. The model is able to predict whether two texts are related to the same wikipedia page, with only medical topic. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('WikiMedical_sent_bert') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results The model is evaluated on the test set of [WikiMedical_sentence_similarity](https://huggingface.co/datasets/nuvocare/WikiMedical_sentence_similarity). It achieves a : - cosine spearman score of 0.86 - cosine pearson score of 0.94 For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=WikiMedical_sent_bert) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 3170 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 2, "evaluation_steps": 0, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 300, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors