--- tags: - generated_from_trainer metrics: - rouge model-index: - name: SummarEaseElementaryV2 results: [] --- # SummarEaseElementaryV2 This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3269 - Rouge1: 0.1335 - Rouge2: 0.0509 - Rougel: 0.1066 - Rougelsum: 0.1075 - Gen Len: 20.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 1 | 2.3970 | 0.0914 | 0.0227 | 0.0746 | 0.0745 | 20.0 | | No log | 2.0 | 2 | 2.3609 | 0.1195 | 0.0397 | 0.0957 | 0.0962 | 20.0 | | No log | 3.0 | 3 | 2.3386 | 0.1323 | 0.0496 | 0.1066 | 0.1075 | 20.0 | | No log | 4.0 | 4 | 2.3269 | 0.1335 | 0.0509 | 0.1066 | 0.1075 | 20.0 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1