## Creation ```python from transformers import AutoProcessor, Qwen2VLForConditionalGeneration from llmcompressor.modifiers.quantization import QuantizationModifier from llmcompressor.transformers import oneshot, wrap_hf_model_class MODEL_ID = "Qwen/Qwen2-VL-72B-Instruct" # Load model. model_class = wrap_hf_model_class(Qwen2VLForConditionalGeneration) model = model_class.from_pretrained(MODEL_ID, device_map="auto", torch_dtype="auto") processor = AutoProcessor.from_pretrained(MODEL_ID) # Configure the quantization algorithm and scheme. # In this case, we: # * quantize the weights to fp8 with per channel via ptq # * quantize the activations to fp8 with dynamic per token recipe = QuantizationModifier( targets="Linear", scheme="FP8_DYNAMIC", ignore=["re:.*lm_head", "re:visual.*"], ) # Apply quantization and save to disk in compressed-tensors format. SAVE_DIR = MODEL_ID.split("/")[1] + "-FP8-dynamic" oneshot(model=model, recipe=recipe, output_dir=SAVE_DIR) processor.save_pretrained(SAVE_DIR) # Confirm generations of the quantized model look sane. print("========== SAMPLE GENERATION ==============") input_ids = processor(text="Hello my name is", return_tensors="pt").input_ids.to("cuda") output = model.generate(input_ids, max_new_tokens=20) print(processor.decode(output[0])) print("==========================================") ```