--- library_name: peft base_model: meta-llama/Llama-2-7b-chat-hf --- # Model Card for Model ID def generate_prompt(keyword): # Define the roles and markers B_SYS, E_SYS = "<>", "<>" B_INST, E_INST = "[INST]", "[/INST]" catlist=['Baby Products', 'Bags, Wallets and Luggage', 'Beauty', 'Books', 'Car & Motorbike', 'Clothing & Accessories', 'Computers & Accessories', 'Electronics', 'Garden & Outdoors', 'Gift Cards', 'Grocery & Gourmet Foods', 'Health & Personal Care', 'Home & Kitchen', 'Home Improvement', 'Industrial & Scientific', 'Jewellery', 'Kindle Store', 'Movies & TV Shows', 'Music', 'Musical Instruments', 'Office Products', 'Pet Supplies', 'Shoes & Handbags', 'Software', 'Sports, Fitness & Outdoors', 'Toys & Games', 'Video Games', 'Watches'] #catlist=['hair shampoo' , 'other category' ] # Format your prompt template prompt = f"""{B_INST} {B_SYS}\nYou are a helpful assistant that provides accurate and concise responses. Do not hallucinate.\n{E_SYS} Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: Analyze the following keyword searched on amazon with intent of shopping. Identify the product category from the list {catlist}. Extract the brand from keyword related to brand loyalty intent. Output in JSON with keyword, product category, brand as keys. ### Input: {keyword.strip()} {E_INST}\n\n""" return(prompt) ## Model Details ### Model Description - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses ### Direct Use [More Information Needed] ### Downstream Use [optional] [More Information Needed] ### Out-of-Scope Use [More Information Needed] ## Bias, Risks, and Limitations [More Information Needed] ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data [More Information Needed] ### Training Procedure #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] #### Speeds, Sizes, Times [optional] [More Information Needed] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data [More Information Needed] #### Factors [More Information Needed] #### Metrics [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] [More Information Needed] ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.0.dev0