--- license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer datasets: - audiofolder metrics: - wer model-index: - name: whisper-large-v3-ivn-v1 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: audiofolder type: audiofolder config: default split: train args: default metrics: - name: Wer type: wer value: 70.56790998493842 --- # whisper-large-v3-ivn-v1 This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 1.8302 - Wer: 70.5679 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0274 | 14.29 | 1000 | 1.4520 | 78.4974 | | 0.0033 | 28.57 | 2000 | 1.6206 | 73.4296 | | 0.0004 | 42.86 | 3000 | 1.7704 | 70.3553 | | 0.0002 | 57.14 | 4000 | 1.8302 | 70.5679 | ### Framework versions - Transformers 4.37.1 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.1