--- license: agpl-3.0 pipeline_tag: object-detection library_name: ultralytics tags: - model_hub_mixin - pytorch_model_hub_mixin --- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration: - Paper: [YOLOv12: Attention-Centric Real-Time Object Detectors](https://huggingface.co/papers/2502.12524) - Library: https://github.com/ultralytics/ultralytics ## Installation First run this: ```bash pip install -q git+https://github.com/NielsRogge/yolov12.git@add_mixin ``` ## Usage ```python from ultralytics import YOLO model = YOLO.from_pretrained("nielsr/yolov12n") ``` Inference can be done as follows (assuming you also install supervision using `pip install supervision`): ```python import supervision as sv import cv2 from PIL import Image import requests import numpy as np url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) image = np.array(image) # image = cv2.imread(IMAGE_PATH) results = model(source=image, conf=0.25, verbose=False)[0] detections = sv.Detections.from_ultralytics(results) box_annotator = sv.BoxAnnotator() label_annotator = sv.LabelAnnotator() category_dict = { 0: 'person', 1: 'bicycle', 2: 'car', 3: 'motorcycle', 4: 'airplane', 5: 'bus', 6: 'train', 7: 'truck', 8: 'boat', 9: 'traffic light', 10: 'fire hydrant', 11: 'stop sign', 12: 'parking meter', 13: 'bench', 14: 'bird', 15: 'cat', 16: 'dog', 17: 'horse', 18: 'sheep', 19: 'cow', 20: 'elephant', 21: 'bear', 22: 'zebra', 23: 'giraffe', 24: 'backpack', 25: 'umbrella', 26: 'handbag', 27: 'tie', 28: 'suitcase', 29: 'frisbee', 30: 'skis', 31: 'snowboard', 32: 'sports ball', 33: 'kite', 34: 'baseball bat', 35: 'baseball glove', 36: 'skateboard', 37: 'surfboard', 38: 'tennis racket', 39: 'bottle', 40: 'wine glass', 41: 'cup', 42: 'fork', 43: 'knife', 44: 'spoon', 45: 'bowl', 46: 'banana', 47: 'apple', 48: 'sandwich', 49: 'orange', 50: 'broccoli', 51: 'carrot', 52: 'hot dog', 53: 'pizza', 54: 'donut', 55: 'cake', 56: 'chair', 57: 'couch', 58: 'potted plant', 59: 'bed', 60: 'dining table', 61: 'toilet', 62: 'tv', 63: 'laptop', 64: 'mouse', 65: 'remote', 66: 'keyboard', 67: 'cell phone', 68: 'microwave', 69: 'oven', 70: 'toaster', 71: 'sink', 72: 'refrigerator', 73: 'book', 74: 'clock', 75: 'vase', 76: 'scissors', 77: 'teddy bear', 78: 'hair drier', 79: 'toothbrush' } labels = [ f"{category_dict[class_id]} {confidence:.2f}" for class_id, confidence in zip(detections.class_id, detections.confidence) ] annotated_image = box_annotator.annotate( image.copy(), detections=detections, ) annotated_image = label_annotator.annotate( annotated_image, detections=detections, labels=labels, ) Image.fromarray(annotated_image) ``` This results in: ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5f1158120c833276f61f1a84/64hKzWIZ9NrJv4QM7H5CA.png)