--- tags: - generated_from_trainer datasets: - funsd-layoutlmv3 metrics: - precision - recall - f1 - accuracy model-index: - name: lilt-roberta-en-base-finetuned-funsd results: - task: name: Token Classification type: token-classification dataset: name: funsd-layoutlmv3 type: funsd-layoutlmv3 config: funsd split: train args: funsd metrics: - name: Precision type: precision value: 0.8761670761670761 - name: Recall type: recall value: 0.8857426726279185 - name: F1 type: f1 value: 0.8809288537549407 - name: Accuracy type: accuracy value: 0.8068465470105789 inference: false --- # lilt-roberta-en-base-finetuned-funsd This model is a fine-tuned version of [nielsr/lilt-roberta-en-base](https://huggingface.co/nielsr/lilt-roberta-en-base) on the funsd-layoutlmv3 dataset. It achieves the following results on the evaluation set: - Loss: 1.6552 - Precision: 0.8762 - Recall: 0.8857 - F1: 0.8809 - Accuracy: 0.8068 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 0.1 - training_steps: 2000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 5.26 | 100 | 1.1789 | 0.8506 | 0.8485 | 0.8495 | 0.7869 | | No log | 10.53 | 200 | 1.2382 | 0.8360 | 0.8788 | 0.8569 | 0.7970 | | No log | 15.79 | 300 | 1.3766 | 0.8557 | 0.8897 | 0.8724 | 0.7909 | | No log | 21.05 | 400 | 1.5590 | 0.8368 | 0.8763 | 0.8561 | 0.7792 | | 0.04 | 26.32 | 500 | 1.4379 | 0.8562 | 0.8813 | 0.8685 | 0.7992 | | 0.04 | 31.58 | 600 | 1.5397 | 0.8593 | 0.8947 | 0.8766 | 0.8054 | | 0.04 | 36.84 | 700 | 1.6132 | 0.8621 | 0.8723 | 0.8672 | 0.7933 | | 0.04 | 42.11 | 800 | 1.6483 | 0.8566 | 0.8872 | 0.8716 | 0.7777 | | 0.04 | 47.37 | 900 | 1.6593 | 0.8641 | 0.8813 | 0.8726 | 0.7895 | | 0.0044 | 52.63 | 1000 | 1.6704 | 0.8595 | 0.8718 | 0.8656 | 0.7925 | | 0.0044 | 57.89 | 1100 | 1.6795 | 0.8495 | 0.8803 | 0.8646 | 0.7748 | | 0.0044 | 63.16 | 1200 | 1.5515 | 0.8604 | 0.8912 | 0.8755 | 0.7991 | | 0.0044 | 68.42 | 1300 | 1.6665 | 0.8573 | 0.8867 | 0.8718 | 0.7821 | | 0.0044 | 73.68 | 1400 | 1.5893 | 0.8604 | 0.8877 | 0.8738 | 0.7895 | | 0.0008 | 78.95 | 1500 | 1.5613 | 0.8603 | 0.8872 | 0.8736 | 0.8123 | | 0.0008 | 84.21 | 1600 | 1.5853 | 0.8521 | 0.8872 | 0.8693 | 0.8040 | | 0.0008 | 89.47 | 1700 | 1.6539 | 0.8707 | 0.8833 | 0.8769 | 0.8077 | | 0.0008 | 94.74 | 1800 | 1.6634 | 0.8787 | 0.8813 | 0.8800 | 0.8079 | | 0.0008 | 100.0 | 1900 | 1.6534 | 0.8810 | 0.8862 | 0.8836 | 0.8073 | | 0.0004 | 105.26 | 2000 | 1.6552 | 0.8762 | 0.8857 | 0.8809 | 0.8068 | ### Framework versions - Transformers 4.23.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.13.0