--- library_name: tf-keras license: creativeml-openrail-m tags: - keras-cv - diffusers - stable-diffusion - text-to-image - diffusion-models-class - dreambooth - nature widget: - text: a photo of puggieace dog on the beach --- # DreamBooth model for the `puggieace` concept trained by nielsgl on the nielsgl/dreambooth-ace dataset. This is a KerasCV Stable Diffusion V2.1 model fine-tuned on the puggieace concept with DreamBooth. It can be used by modifying the `instance_prompt`: **a photo of puggieace** This model was created as part of the Keras DreamBooth Sprint 🔥. Visit the [organisation page](https://huggingface.co/keras-dreambooth) for instructions on how to take part! ## Description This is a KerasCV Stable Diffusion model fine-tuned on `dog` images for the nature theme. ## Usage ```python from huggingface_hub import from_pretrained_keras import keras_cv import matplotlib.pyplot as plt model = keras_cv.models.StableDiffusionV2(img_width=512, img_height=512, jit_compile=True) model._diffusion_model = from_pretrained_keras(nielsgl/dreambooth-pug-ace-sd2.1-base) model._text_encoder = from_pretrained_keras(nielsgl/dreambooth-pug-ace-sd2.1-base-text-encoder) images = model.text_to_image("a photo of puggieace dog on the beach", batch_size=3) plt.imshow(image[0]) ``` ### Training hyperparameters The following hyperparameters were used during training: | Hyperparameters | Value | | :-- | :-- | | name | RMSprop | | weight_decay | None | | clipnorm | None | | global_clipnorm | None | | clipvalue | None | | use_ema | False | | ema_momentum | 0.99 | | ema_overwrite_frequency | 100 | | jit_compile | True | | is_legacy_optimizer | False | | learning_rate | 0.0010000000474974513 | | rho | 0.9 | | momentum | 0.0 | | epsilon | 1e-07 | | centered | False | | training_precision | float32 |