--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: sentiment-polish-gpt2-small results: - task: type: text-classification dataset: type: allegro/klej-polemo2-out name: klej-polemo2-out metrics: - type: accuracy value: 98.38% license: mit language: - pl datasets: - clarin-pl/polemo2-official --- # sentiment-polish-gpt2-small This model was trained from [polish-gpt2-small](https://huggingface.co/sdadas/polish-gpt2-small) on the [polemo2-official](https://huggingface.co/datasets/clarin-pl/polemo2-official) dataset. It achieves the following results on the evaluation set: - Loss: 0.4659 - Accuracy: 0.9627 ## Model description Trained from [polish-gpt2-small](https://huggingface.co/sdadas/polish-gpt2-small) ## Intended uses & limitations Sentiment analysis - neutral/negative/positive/ambiguous ## Training and evaluation data Merged all rows from [polemo2-official](https://huggingface.co/datasets/clarin-pl/polemo2-official) dataset. Train/test split: 80%/20% Datacollator: ```py from transformers import DataCollatorWithPadding data_collator = DataCollatorWithPadding( tokenizer=tokenizer, padding="longest", max_length=128, pad_to_multiple_of=8 ) ``` ## Training procedure GPU: RTX 3090 Training time: 2:53:05 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.4049 | 1.0 | 3284 | 0.3351 | 0.8792 | | 0.1885 | 2.0 | 6568 | 0.2625 | 0.9218 | | 0.1182 | 3.0 | 9852 | 0.2583 | 0.9419 | | 0.0825 | 4.0 | 13136 | 0.2886 | 0.9482 | | 0.0586 | 5.0 | 16420 | 0.3343 | 0.9538 | | 0.034 | 6.0 | 19704 | 0.3734 | 0.9595 | | 0.0288 | 7.0 | 22988 | 0.4125 | 0.9599 | | 0.0185 | 8.0 | 26273 | 0.4262 | 0.9626 | | 0.0069 | 9.0 | 29557 | 0.4529 | 0.9622 | | 0.0059 | 10.0 | 32840 | 0.4659 | 0.9627 | ### Evaluation Evaluated on [allegro/klej-polemo2-out](https://huggingface.co/datasets/allegro/klej-polemo2-out) test dataset. ```py from datasets import load_dataset from evaluate import evaluator data = load_dataset("allegro/klej-polemo2-out", split="test").shuffle(seed=42) task_evaluator = evaluator("text-classification") # fix labels l = { "__label__meta_zero": 0, "__label__meta_minus_m": 1, "__label__meta_plus_m": 2, "__label__meta_amb": 3 } def fix_labels(examples): examples["target"] = l[examples["target"]] return examples data = data.map(fix_labels) eval_resutls = task_evaluator.compute( model_or_pipeline="nie3e/sentiment-polish-gpt2-small", data=data, label_mapping={"NEUTRAL": 0, "NEGATIVE": 1, "POSITIVE": 2, "AMBIGUOUS": 3}, input_column="sentence", label_column="target" ) print(eval_resutls) ``` ```json { "accuracy": 0.9838056680161943, "total_time_in_seconds": 5.2441766999982065, "samples_per_second": 94.1997244296076, "latency_in_seconds": 0.010615742307688678 } ``` ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0