--- library_name: transformers license: mit base_model: DeepMount00/Italian-ModernBERT-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: modernbert-italian-finetuned-ner results: [] datasets: - tner/wikiann language: - it pipeline_tag: token-classification --- # modernbert-italian-finetuned-ner This model is a fine-tuned version of [DeepMount00/Italian-ModernBERT-base](https://huggingface.co/DeepMount00/Italian-ModernBERT-base) on [tner/wikiann](https://huggingface.co/datasets/tner/wikiann) dataset. It achieves the following results on the evaluation set: - Loss: 0.0422 - Precision: 0.9339 - Recall: 0.9452 - F1: 0.9395 - Accuracy: 0.9909 ## Model description Token classification for italian language experiment, NER. ### Example ```python from transformers import pipeline ner_pipeline = pipeline("ner", model="nickprock/modernbert-italian-finetuned-ner", aggregation_strategy="simple") text = "La sede storica della Olivetti รจ ad Ivrea" output = ner_pipeline(text) ``` ## Intended uses & limitations The model can be used on token classification, in particular NER. It is fine tuned on italian language. ## Training and evaluation data The dataset used is [wikiann](https://huggingface.co/datasets/tner/wikiann) ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0277 | 1.0 | 11050 | 0.0324 | 0.9233 | 0.9362 | 0.9297 | 0.9899 | | 0.0139 | 2.0 | 22100 | 0.0341 | 0.9327 | 0.9428 | 0.9377 | 0.9907 | | 0.0052 | 3.0 | 33150 | 0.0422 | 0.9339 | 0.9452 | 0.9395 | 0.9909 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.5.1+cu124 - Datasets 3.3.2 - Tokenizers 0.21.0