--- license: apache-2.0 datasets: - ruanchaves/hatebr language: - pt metrics: - accuracy library_name: transformers pipeline_tag: text-classification tags: - hate-speech widget: - text: "Não concordo com a sua opinião." example_title: Exemplo - text: "Pega a sua opinião e vai a merda com ela!" example_title: Exemplo --- # TeenyTinyLlama-162m-HateBR TeenyTinyLlama is a series of small foundational models trained on Portuguese. This repository contains a version of [TeenyTinyLlama-162m](https://huggingface.co/nicholasKluge/TeenyTinyLlama-162m) fine-tuned on a translated version of the [HateBR dataset](https://huggingface.co/datasets/ruanchaves/hatebr). ## Reproducing ```python # Hatebr ! pip install transformers datasets evaluate accelerate -q import evaluate import numpy as np from huggingface_hub import login from datasets import load_dataset, Dataset, DatasetDict from transformers import AutoTokenizer, DataCollatorWithPadding from transformers import AutoModelForSequenceClassification, TrainingArguments, Trainer # Load the task dataset = load_dataset("ruanchaves/hatebr") # Format the dataset train = dataset['train'].to_pandas() train = train[['instagram_comments', 'offensive_language']] train.columns = ['text', 'labels'] train.labels = train.labels.astype(int) train = Dataset.from_pandas(train) test = dataset['test'].to_pandas() test = test[['instagram_comments', 'offensive_language']] test.columns = ['text', 'labels'] test.labels = test.labels.astype(int) test = Dataset.from_pandas(test) dataset = DatasetDict({ "train": train, "test": test }) # Create a `ModelForSequenceClassification` model = AutoModelForSequenceClassification.from_pretrained( "nicholasKluge/TeenyTinyLlama-162m", num_labels=2, id2label={0: "NONTOXIC", 1: "TOXIC"}, label2id={"NONTOXIC": 0, "TOXIC": 1} ) tokenizer = AutoTokenizer.from_pretrained("nicholasKluge/TeenyTinyLlama-162m") # Preprocess the dataset def preprocess_function(examples): return tokenizer(examples["text"], truncation=True) dataset_tokenized = dataset.map(preprocess_function, batched=True) # Create a simple data collactor data_collator = DataCollatorWithPadding(tokenizer=tokenizer) # Use accuracy as evaluation metric accuracy = evaluate.load("accuracy") # Function to compute accuracy def compute_metrics(eval_pred): predictions, labels = eval_pred predictions = np.argmax(predictions, axis=1) return accuracy.compute(predictions=predictions, references=labels) # Define training arguments training_args = TrainingArguments( output_dir="checkpoints", learning_rate=4e-5, per_device_train_batch_size=16, per_device_eval_batch_size=16, num_train_epochs=3, weight_decay=0.01, evaluation_strategy="epoch", save_strategy="epoch", load_best_model_at_end=True, push_to_hub=True, hub_token="your_token_here", hub_model_id="username/model-ID", ) # Define the Trainer trainer = Trainer( model=model, args=training_args, train_dataset=dataset_tokenized["train"], eval_dataset=dataset_tokenized["test"], tokenizer=tokenizer, data_collator=data_collator, compute_metrics=compute_metrics, ) # Train! trainer.train() ``` ## Results | Models | [HateBr](https://huggingface.co/datasets/ruanchaves/hatebr) | |--------------------------------------------------------------------------------------------|-------------------------------------------------------------| | [Teeny Tiny Llama 162m](https://huggingface.co/nicholasKluge/TeenyTinyLlama-162m) | 90.71 | | [Bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) | 91.28 | | [Gpt2-small-portuguese](https://huggingface.co/pierreguillou/gpt2-small-portuguese) | 87.42 |