--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - precision - recall model-index: - name: conjunction-classification-finetuned results: [] --- # conjunction-classification-finetuned This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3628 - Precision: 0.9722 - Recall: 0.9630 - F1-score: 0.9659 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1-score | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:--------:| | 1.0373 | 1.0 | 59 | 1.0341 | 0.1154 | 0.3333 | 0.1714 | | 1.0096 | 2.0 | 118 | 0.8995 | 0.4697 | 0.5556 | 0.4602 | | 0.8291 | 3.0 | 177 | 0.7374 | 0.4833 | 0.6667 | 0.5402 | | 0.6212 | 4.0 | 236 | 0.5642 | 0.8246 | 0.6970 | 0.6032 | | 0.3968 | 5.0 | 295 | 0.3628 | 0.9722 | 0.9630 | 0.9659 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0