Update README.md
Browse files
README.md
CHANGED
|
@@ -34,37 +34,46 @@ from transformers import Speech2TextTokenizer
|
|
| 34 |
import torch
|
| 35 |
|
| 36 |
if __name__ == "__main__":
|
| 37 |
-
#
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
model = model.cuda().eval()
|
| 43 |
|
| 44 |
-
# Load
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
sample = load_feature(
|
| 46 |
-
|
| 47 |
-
|
| 48 |
)
|
| 49 |
|
| 50 |
-
# cuda
|
| 51 |
audio_feats = sample['audio_source'].cuda()
|
| 52 |
video_feats = sample['video_source'].cuda()
|
| 53 |
attention_mask = torch.BoolTensor(audio_feats.size(0), audio_feats.size(-1)).fill_(False).cuda()
|
| 54 |
|
| 55 |
-
# Generate
|
| 56 |
output = model.generate(
|
| 57 |
audio_feats,
|
| 58 |
attention_mask=attention_mask,
|
| 59 |
video=video_feats,
|
|
|
|
| 60 |
)
|
| 61 |
|
| 62 |
-
# decode output sequence
|
| 63 |
print(tokenizer.batch_decode(output, skip_special_tokens=True))
|
| 64 |
-
|
| 65 |
-
# check output
|
| 66 |
-
assert output.detach().cpu().numpy().tolist() == [[ 2, 16, 130, 516, 8, 339, 541, 808, 210, 195, 541, 79, 130, 317, 269, 4, 2]]
|
| 67 |
-
print("Example run successfully")
|
| 68 |
```
|
| 69 |
|
| 70 |
### Data preprocessing scripts
|
|
@@ -81,111 +90,55 @@ cp raw_video.mp4 ./example/
|
|
| 81 |
python src/dataset/video_to_audio_lips.py
|
| 82 |
```
|
| 83 |
|
| 84 |
-
### Pretrained model
|
| 85 |
|
| 86 |
<table align="center">
|
| 87 |
<tr>
|
| 88 |
-
<th>Task</th>
|
| 89 |
<th>Languages</th>
|
| 90 |
<th>Huggingface</th>
|
| 91 |
</tr>
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
<tr>
|
| 93 |
-
<
|
| 94 |
-
<th>
|
| 95 |
-
<th><a href="todo">TODO</a></th>
|
| 96 |
-
</tr>
|
| 97 |
-
<tr>
|
| 98 |
-
<th>de</th>
|
| 99 |
-
<th><a href="todo">TODO</a></th>
|
| 100 |
-
</tr>
|
| 101 |
-
<tr>
|
| 102 |
-
<th>el</th>
|
| 103 |
-
<th><a href="todo">TODO</a></th>
|
| 104 |
-
</tr>
|
| 105 |
-
<tr>
|
| 106 |
-
<th>en</th>
|
| 107 |
-
<th><a href="nguyenvulebinh/AV-HuBERT">English Chekpoint</a></th>
|
| 108 |
-
</tr>
|
| 109 |
-
<tr>
|
| 110 |
-
<th>es</th>
|
| 111 |
-
<th><a href="todo">TODO</a></th>
|
| 112 |
-
</tr>
|
| 113 |
-
<tr>
|
| 114 |
-
<th>fr</th>
|
| 115 |
-
<th><a href="todo">TODO</a></th>
|
| 116 |
-
</tr>
|
| 117 |
-
<tr>
|
| 118 |
-
<th>it</th>
|
| 119 |
-
<th><a href="todo">TODO</a></th>
|
| 120 |
</tr>
|
| 121 |
<tr>
|
| 122 |
-
<th>
|
| 123 |
-
<th><a href="
|
| 124 |
</tr>
|
| 125 |
<tr>
|
| 126 |
-
<th>
|
| 127 |
-
<th><a href="
|
| 128 |
</tr>
|
| 129 |
<tr>
|
| 130 |
-
<th>
|
| 131 |
-
<th><a href="
|
| 132 |
</tr>
|
| 133 |
<tr>
|
| 134 |
-
<
|
| 135 |
-
<th>
|
| 136 |
-
<th><a href="todo">TODO</a></th>
|
| 137 |
-
</tr>
|
| 138 |
-
<tr>
|
| 139 |
-
<th>en-es</th>
|
| 140 |
-
<th><a href="todo">TODO</a></th>
|
| 141 |
</tr>
|
| 142 |
<tr>
|
| 143 |
-
<th>
|
| 144 |
-
<th><a href="
|
| 145 |
</tr>
|
| 146 |
<tr>
|
| 147 |
-
<th>
|
| 148 |
-
<th><a href="
|
| 149 |
</tr>
|
| 150 |
<tr>
|
| 151 |
-
<th>
|
| 152 |
-
<th><a href="
|
| 153 |
</tr>
|
| 154 |
<tr>
|
| 155 |
-
<th>
|
| 156 |
-
<th><a href="
|
| 157 |
-
</tr>
|
| 158 |
-
<tr>
|
| 159 |
-
<th>el-en</th>
|
| 160 |
-
<th><a href="todo">TODO</a></th>
|
| 161 |
-
</tr>
|
| 162 |
-
<tr>
|
| 163 |
-
<th>es-en</th>
|
| 164 |
-
<th><a href="todo">TODO</a></th>
|
| 165 |
-
</tr>
|
| 166 |
-
<tr>
|
| 167 |
-
<th>fr-en</th>
|
| 168 |
-
<th><a href="todo">TODO</a></th>
|
| 169 |
-
</tr>
|
| 170 |
-
<tr>
|
| 171 |
-
<th>it-en</th>
|
| 172 |
-
<th><a href="todo">TODO</a></th>
|
| 173 |
-
</tr>
|
| 174 |
-
<tr>
|
| 175 |
-
<th>pt-en</th>
|
| 176 |
-
<th><a href="todo">TODO</a></th>
|
| 177 |
-
</tr>
|
| 178 |
-
<tr>
|
| 179 |
-
<th>ru-en</th>
|
| 180 |
-
<th><a href="todo">TODO</a></th>
|
| 181 |
-
</tr>
|
| 182 |
-
<tr>
|
| 183 |
-
<th>{el,es,fr,it,pt,ru}-en</th>
|
| 184 |
-
<th><a href="todo">TODO</a></th>
|
| 185 |
</tr>
|
| 186 |
</table>
|
| 187 |
|
| 188 |
-
|
| 189 |
## Acknowledgments
|
| 190 |
|
| 191 |
**AV-HuBERT**: A significant portion of the codebase in this repository has been adapted from the original AV-HuBERT implementation.
|
|
|
|
| 34 |
import torch
|
| 35 |
|
| 36 |
if __name__ == "__main__":
|
| 37 |
+
# Choose language to run example
|
| 38 |
+
AVAILABEL_LANGUAGES = ["ar", "de", "el", "en", "es", "fr", "it", "pt", "ru", "multilingual"]
|
| 39 |
+
language = "ru"
|
| 40 |
+
assert language in AVAILABEL_LANGUAGES, f"Language {language} is not available, please choose one of {AVAILABEL_LANGUAGES}"
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
# Load model and tokenizer
|
| 44 |
+
model_name_or_path = f"nguyenvulebinh/AV-HuBERT-MuAViC-{language}"
|
| 45 |
+
model = AV2TextForConditionalGeneration.from_pretrained(model_name_or_path, cache_dir='./model-bin')
|
| 46 |
+
tokenizer = Speech2TextTokenizer.from_pretrained(model_name_or_path, cache_dir='./model-bin')
|
| 47 |
+
|
| 48 |
model = model.cuda().eval()
|
| 49 |
|
| 50 |
+
# Load example video and audio
|
| 51 |
+
video_example = f"./example/video_processed/{language}_lip_movement.mp4"
|
| 52 |
+
audio_example = f"./example/video_processed/{language}_audio.wav"
|
| 53 |
+
if not os.path.exists(video_example) or not os.path.exists(audio_example):
|
| 54 |
+
print(f"WARNING: Example video and audio for {language} is not available english will be used instead")
|
| 55 |
+
video_example = f"./example/video_processed/en_lip_movement.mp4"
|
| 56 |
+
audio_example = f"./example/video_processed/en_audio.wav"
|
| 57 |
+
|
| 58 |
+
# Load and process example
|
| 59 |
sample = load_feature(
|
| 60 |
+
video_example,
|
| 61 |
+
audio_example
|
| 62 |
)
|
| 63 |
|
|
|
|
| 64 |
audio_feats = sample['audio_source'].cuda()
|
| 65 |
video_feats = sample['video_source'].cuda()
|
| 66 |
attention_mask = torch.BoolTensor(audio_feats.size(0), audio_feats.size(-1)).fill_(False).cuda()
|
| 67 |
|
| 68 |
+
# Generate text
|
| 69 |
output = model.generate(
|
| 70 |
audio_feats,
|
| 71 |
attention_mask=attention_mask,
|
| 72 |
video=video_feats,
|
| 73 |
+
max_length=1024,
|
| 74 |
)
|
| 75 |
|
|
|
|
| 76 |
print(tokenizer.batch_decode(output, skip_special_tokens=True))
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
```
|
| 78 |
|
| 79 |
### Data preprocessing scripts
|
|
|
|
| 90 |
python src/dataset/video_to_audio_lips.py
|
| 91 |
```
|
| 92 |
|
| 93 |
+
### Pretrained AVSR model
|
| 94 |
|
| 95 |
<table align="center">
|
| 96 |
<tr>
|
|
|
|
| 97 |
<th>Languages</th>
|
| 98 |
<th>Huggingface</th>
|
| 99 |
</tr>
|
| 100 |
+
<tr>
|
| 101 |
+
<th>Arabic</th>
|
| 102 |
+
<th><a href="https://huggingface.co/nguyenvulebinh/AV-HuBERT-MuAViC-ar">Checkpoint-AR</a></th>
|
| 103 |
+
</tr>
|
| 104 |
<tr>
|
| 105 |
+
<th>German</th>
|
| 106 |
+
<th><a href="https://huggingface.co/nguyenvulebinh/AV-HuBERT-MuAViC-de">Checkpoint-DE</a></th>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
</tr>
|
| 108 |
<tr>
|
| 109 |
+
<th>Greek</th>
|
| 110 |
+
<th><a href="https://huggingface.co/nguyenvulebinh/AV-HuBERT-MuAViC-el">Checkpoint-EL</a></th>
|
| 111 |
</tr>
|
| 112 |
<tr>
|
| 113 |
+
<th>English</th>
|
| 114 |
+
<th><a href="https://huggingface.co/nguyenvulebinh/AV-HuBERT-MuAViC-en">Checkpoint-EN</a></th>
|
| 115 |
</tr>
|
| 116 |
<tr>
|
| 117 |
+
<th>Spanish</th>
|
| 118 |
+
<th><a href="https://huggingface.co/nguyenvulebinh/AV-HuBERT-MuAViC-es">Checkpoint-ES</a></th>
|
| 119 |
</tr>
|
| 120 |
<tr>
|
| 121 |
+
<th>French</th>
|
| 122 |
+
<th><a href="https://huggingface.co/nguyenvulebinh/AV-HuBERT-MuAViC-fr">Checkpoint-FR</a></th>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
</tr>
|
| 124 |
<tr>
|
| 125 |
+
<th>Italian</th>
|
| 126 |
+
<th><a href="https://huggingface.co/nguyenvulebinh/AV-HuBERT-MuAViC-it">Checkpoint-IT</a></th>
|
| 127 |
</tr>
|
| 128 |
<tr>
|
| 129 |
+
<th>Portuguese</th>
|
| 130 |
+
<th><a href="https://huggingface.co/nguyenvulebinh/AV-HuBERT-MuAViC-pt">Checkpoint-PT</a></th>
|
| 131 |
</tr>
|
| 132 |
<tr>
|
| 133 |
+
<th>Russian</th>
|
| 134 |
+
<th><a href="https://huggingface.co/nguyenvulebinh/AV-HuBERT-MuAViC-ru">Checkpoint-RU</a></th>
|
| 135 |
</tr>
|
| 136 |
<tr>
|
| 137 |
+
<th>Multilingual</th>
|
| 138 |
+
<th><a href="https://huggingface.co/nguyenvulebinh/AV-HuBERT-MuAViC-multilingual">Checkpoint-ar_de_el_es_fr_it_pt_ru</a></th>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
</tr>
|
| 140 |
</table>
|
| 141 |
|
|
|
|
| 142 |
## Acknowledgments
|
| 143 |
|
| 144 |
**AV-HuBERT**: A significant portion of the codebase in this repository has been adapted from the original AV-HuBERT implementation.
|