--- library_name: transformers base_model: nguyenkhoa/dinov2_Liveness_detection_v2.1.1 tags: - generated_from_trainer metrics: - accuracy - f1 - recall - precision model-index: - name: dinov2_Liveness_detection_v2.1.2 results: [] --- [Visualize in Weights & Biases](https://wandb.ai/nguyenkhoaht002/liveness_detection/runs/wt5k0v8b) # dinov2_Liveness_detection_v2.1.2 This model is a fine-tuned version of [nguyenkhoa/dinov2_Liveness_detection_v2.1.1](https://huggingface.co/nguyenkhoa/dinov2_Liveness_detection_v2.1.1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0303 - Accuracy: 0.9936 - F1: 0.9936 - Recall: 0.9936 - Precision: 0.9936 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 768 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 0.0746 | 0.6095 | 64 | 0.0390 | 0.9852 | 0.9852 | 0.9852 | 0.9855 | | 0.034 | 1.2190 | 128 | 0.0360 | 0.9871 | 0.9872 | 0.9871 | 0.9872 | | 0.0201 | 1.8286 | 192 | 0.0303 | 0.9899 | 0.9899 | 0.9899 | 0.9898 | | 0.0129 | 2.4381 | 256 | 0.0263 | 0.9912 | 0.9912 | 0.9912 | 0.9913 | | 0.0105 | 3.0476 | 320 | 0.0232 | 0.9936 | 0.9935 | 0.9936 | 0.9936 | | 0.0049 | 3.6571 | 384 | 0.0356 | 0.9913 | 0.9913 | 0.9913 | 0.9914 | | 0.0035 | 4.2667 | 448 | 0.0281 | 0.9933 | 0.9933 | 0.9933 | 0.9933 | | 0.0015 | 4.8762 | 512 | 0.0303 | 0.9936 | 0.9936 | 0.9936 | 0.9936 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0