from original import *

import shutil, glob

from easyfuncs import download_from_url, CachedModels

os.makedirs("dataset",exist_ok=True)

model_library = CachedModels()



with gr.Blocks(title="🔊",theme=gr.themes.Base(primary_hue="sky",neutral_hue="zinc")) as app:

    with gr.Row():

        gr.HTML("<img  src='file/a.png' alt='image'>")

    with gr.Tabs():

        with gr.TabItem("Inference"):

            with gr.Row():

                voice_model = gr.Dropdown(label="Model Voice", choices=sorted(names), value=lambda:sorted(names)[0] if len(sorted(names)) > 0 else '', interactive=True)

                refresh_button = gr.Button("Refresh", variant="primary")

                spk_item = gr.Slider(

                    minimum=0,

                    maximum=2333,

                    step=1,

                    label="Speaker ID",

                    value=0,

                    visible=False,

                    interactive=True,

                )

                vc_transform0 = gr.Number(

                    label="Pitch", 

                    value=0

                )

                but0 = gr.Button(value="Convert", variant="primary")

            with gr.Row():

                with gr.Column():

                    with gr.Row():

                        dropbox = gr.File(label="Drop your audio here & hit the Reload button.")

                    with gr.Row():

                        record_button=gr.Audio(source="microphone", label="OR Record audio.", type="filepath")

                    with gr.Row():

                        paths_for_files = lambda path:[os.path.abspath(os.path.join(path, f)) for f in os.listdir(path) if os.path.splitext(f)[1].lower() in ('.mp3', '.wav', '.flac', '.ogg')]

                        input_audio0 = gr.Dropdown(

                            label="Input Path",

                            value=paths_for_files('audios')[0] if len(paths_for_files('audios')) > 0 else '',

                            choices=paths_for_files('audios'), # Only show absolute paths for audio files ending in .mp3, .wav, .flac or .ogg

                            allow_custom_value=True

                        )

                    with gr.Row():

                        audio_player = gr.Audio()

                        input_audio0.change(

                            inputs=[input_audio0],

                            outputs=[audio_player],

                            fn=lambda path: {"value":path,"__type__":"update"} if os.path.exists(path) else None

                        )

                        record_button.stop_recording(

                            fn=lambda audio:audio, #TODO save wav lambda

                            inputs=[record_button], 

                            outputs=[input_audio0])

                        dropbox.upload(

                            fn=lambda audio:audio.name,

                            inputs=[dropbox], 

                            outputs=[input_audio0])

                with gr.Column():

                    with gr.Accordion("Change Index", open=False):

                        file_index2 = gr.Dropdown(

                            label="Change Index",

                            choices=sorted(index_paths),

                            interactive=True,

                            value=sorted(index_paths)[0] if len(sorted(index_paths)) > 0 else ''

                        )

                        index_rate1 = gr.Slider(

                            minimum=0,

                            maximum=1,

                            label="Index Strength",

                            value=0.5,

                            interactive=True,

                        )

                    vc_output2 = gr.Audio(label="Output")

                    with gr.Accordion("General Settings", open=False):

                        f0method0 = gr.Radio(

                            label="Method",

                            choices=["pm", "harvest", "crepe", "rmvpe"]

                            if config.dml == False

                            else ["pm", "harvest", "rmvpe"],

                            value="rmvpe",

                            interactive=True,

                        )

                        filter_radius0 = gr.Slider(

                            minimum=0,

                            maximum=7,

                            label="Breathiness Reduction (Harvest only)",

                            value=3,

                            step=1,

                            interactive=True,

                        )

                        resample_sr0 = gr.Slider(

                            minimum=0,

                            maximum=48000,

                            label="Resample",

                            value=0,

                            step=1,

                            interactive=True,

                            visible=False

                        )

                        rms_mix_rate0 = gr.Slider(

                            minimum=0,

                            maximum=1,

                            label="Volume Normalization",

                            value=0,

                            interactive=True,

                        )

                        protect0 = gr.Slider(

                            minimum=0,

                            maximum=0.5,

                            label="Breathiness Protection (0 is enabled, 0.5 is disabled)",

                            value=0.33,

                            step=0.01,

                            interactive=True,

                        )

                        if voice_model != None: vc.get_vc(voice_model.value,protect0,protect0)

                    file_index1 = gr.Textbox(

                        label="Index Path",

                        interactive=True,

                        visible=False#Not used here

                    )

                    refresh_button.click(

                        fn=change_choices,

                        inputs=[],

                        outputs=[voice_model, file_index2],

                        api_name="infer_refresh",

                    )

                    refresh_button.click(

                        fn=lambda:{"choices":paths_for_files('audios'),"__type__":"update"}, #TODO check if properly returns a sorted list of audio files in the 'audios' folder that have the extensions '.wav', '.mp3', '.ogg', or '.flac'

                        inputs=[],

                        outputs = [input_audio0],   

                    )

                    refresh_button.click(

                        fn=lambda:{"value":paths_for_files('audios')[0],"__type__":"update"} if len(paths_for_files('audios')) > 0 else {"value":"","__type__":"update"}, #TODO check if properly returns a sorted list of audio files in the 'audios' folder that have the extensions '.wav', '.mp3', '.ogg', or '.flac'

                        inputs=[],

                        outputs = [input_audio0],   

                    )

            with gr.Row():

                f0_file = gr.File(label="F0 Path", visible=False)

            with gr.Row():

                vc_output1 = gr.Textbox(label="Information", placeholder="Welcome!",visible=False)

                but0.click(

                    vc.vc_single,  

                    [

                        spk_item,

                        input_audio0,

                        vc_transform0,

                        f0_file,

                        f0method0,

                        file_index1,

                        file_index2,

                        index_rate1,

                        filter_radius0,

                        resample_sr0,

                        rms_mix_rate0,

                        protect0,

                    ],

                    [vc_output1, vc_output2],

                    api_name="infer_convert",

                )  

                voice_model.change(

                    fn=vc.get_vc,

                    inputs=[voice_model, protect0, protect0],

                    outputs=[spk_item, protect0, protect0, file_index2, file_index2],

                    api_name="infer_change_voice",

                )

        with gr.TabItem("Download Models"):

            with gr.Row():

                url_input = gr.Textbox(label="URL to model", value="",placeholder="https://...", scale=6)

                name_output = gr.Textbox(label="Save as", value="",placeholder="MyModel",scale=2)

                url_download = gr.Button(value="Download Model",scale=2)

                url_download.click(

                    inputs=[url_input,name_output],

                    outputs=[url_input],

                    fn=download_from_url,

                )

            with gr.Row():

                model_browser = gr.Dropdown(choices=list(model_library.models.keys()),label="OR Search Models (Quality UNKNOWN)",scale=5)

                download_from_browser = gr.Button(value="Get",scale=2)

                download_from_browser.click(

                    inputs=[model_browser],

                    outputs=[model_browser],

                    fn=lambda model: download_from_url(model_library.models[model],model),

                )

        with gr.TabItem("Train"):

            with gr.Row():

                with gr.Column():

                    training_name = gr.Textbox(label="Name your model", value="My-Voice",placeholder="My-Voice")

                    np7 = gr.Slider(

                        minimum=0,

                        maximum=config.n_cpu,

                        step=1,

                        label="Number of CPU processes used to extract pitch features",

                        value=int(np.ceil(config.n_cpu / 1.5)),

                        interactive=True,

                    )

                    sr2 = gr.Radio(

                        label="Sampling Rate",

                        choices=["40k", "32k"],

                        value="32k",

                        interactive=True,

                        visible=False

                    )

                    if_f0_3 = gr.Radio(

                        label="Will your model be used for singing? If not, you can ignore this.",

                        choices=[True, False],

                        value=True,

                        interactive=True,

                        visible=False

                    )

                    version19 = gr.Radio(

                        label="Version",

                        choices=["v1", "v2"],

                        value="v2",

                        interactive=True,

                        visible=False,

                    )

                    dataset_folder = gr.Textbox(

                        label="dataset folder", value='dataset'

                    )

                    easy_uploader = gr.Files(label="Drop your audio files here",file_types=['audio'])

                    but1 = gr.Button("1. Process", variant="primary")

                    info1 = gr.Textbox(label="Information", value="",visible=True)

                    easy_uploader.upload(inputs=[dataset_folder],outputs=[],fn=lambda folder:os.makedirs(folder,exist_ok=True))

                    easy_uploader.upload(

                        fn=lambda files,folder: [shutil.copy2(f.name,os.path.join(folder,os.path.split(f.name)[1])) for f in files] if folder != "" else gr.Warning('Please enter a folder name for your dataset'),

                        inputs=[easy_uploader, dataset_folder], 

                        outputs=[])

                    gpus6 = gr.Textbox(

                        label="Enter the GPU numbers to use separated by -, (e.g. 0-1-2)",

                        value=gpus,

                        interactive=True,

                        visible=F0GPUVisible,

                    )

                    gpu_info9 = gr.Textbox(

                        label="GPU Info", value=gpu_info, visible=F0GPUVisible

                    )

                    spk_id5 = gr.Slider(

                        minimum=0,

                        maximum=4,

                        step=1,

                        label="Speaker ID",

                        value=0,

                        interactive=True,

                        visible=False

                    )

                    but1.click(

                        preprocess_dataset,

                        [dataset_folder, training_name, sr2, np7],

                        [info1],

                        api_name="train_preprocess",

                    ) 

                with gr.Column():

                    f0method8 = gr.Radio(

                        label="F0 extraction method",

                        choices=["pm", "harvest", "dio", "rmvpe", "rmvpe_gpu"],

                        value="rmvpe_gpu",

                        interactive=True,

                    )

                    gpus_rmvpe = gr.Textbox(

                        label="GPU numbers to use separated by -, (e.g. 0-1-2)",

                        value="%s-%s" % (gpus, gpus),

                        interactive=True,

                        visible=F0GPUVisible,

                    )

                    but2 = gr.Button("2. Extract Features", variant="primary")

                    info2 = gr.Textbox(label="Information", value="", max_lines=8)

                    f0method8.change(

                        fn=change_f0_method,

                        inputs=[f0method8],

                        outputs=[gpus_rmvpe],

                    )

                    but2.click(

                        extract_f0_feature,

                        [

                            gpus6,

                            np7,

                            f0method8,

                            if_f0_3,

                            training_name,

                            version19,

                            gpus_rmvpe,

                        ],

                        [info2],

                        api_name="train_extract_f0_feature",

                    )

                with gr.Column():

                    total_epoch11 = gr.Slider(

                        minimum=2,

                        maximum=1000,

                        step=1,

                        label="Epochs (more epochs may improve quality but takes longer)",

                        value=150,

                        interactive=True,

                    )

                    but4 = gr.Button("3. Train Index", variant="primary")

                    but3 = gr.Button("4. Train Model", variant="primary")

                    info3 = gr.Textbox(label="Information", value="", max_lines=10)

                    with gr.Accordion(label="General Settings", open=False):

                        gpus16 = gr.Textbox(

                            label="GPUs separated by -, (e.g. 0-1-2)",

                            value="0",

                            interactive=True,

                            visible=True

                        )

                        save_epoch10 = gr.Slider(

                            minimum=1,

                            maximum=50,

                            step=1,

                            label="Weight Saving Frequency",

                            value=25,

                            interactive=True,

                        )

                        batch_size12 = gr.Slider(

                            minimum=1,

                            maximum=40,

                            step=1,

                            label="Batch Size",

                            value=default_batch_size,

                            interactive=True,

                        )

                        if_save_latest13 = gr.Radio(

                            label="Only save the latest model",

                            choices=["yes", "no"],

                            value="yes",

                            interactive=True,

                            visible=False

                        )

                        if_cache_gpu17 = gr.Radio(

                            label="If your dataset is UNDER 10 minutes, cache it to train faster",

                            choices=["yes", "no"],

                            value="no",

                            interactive=True,

                        )

                        if_save_every_weights18 = gr.Radio(

                            label="Save small model at every save point",

                            choices=["yes", "no"],

                            value="yes",

                            interactive=True,

                        )

                        with gr.Accordion(label="Change pretrains", open=False):                            
                            pretrained_G14 = gr.Textbox(

                                label="pretrained G path",
                                                           

                            )

                            pretrained_D15 = gr.Textbox(

                                label="pretrained D path",                                
                            )

                    with gr.Row():

                        download_model = gr.Button('5.Download Model')

                    with gr.Row():

                        model_files = gr.Files(label='Your Model and Index file can be downloaded here:')

                        download_model.click(

                            fn=lambda name: os.listdir(f'assets/weights/{name}') + glob.glob(f'logs/{name.split(".")[0]}/added_*.index'),

                            inputs=[training_name], 

                            outputs=[model_files, info3])

                    with gr.Row():

                        sr2.change(

                            change_sr2,

                            [sr2, if_f0_3, version19],

                            [pretrained_G14, pretrained_D15],

                        )

                        version19.change(

                            change_version19,

                            [sr2, if_f0_3, version19],

                            [pretrained_G14, pretrained_D15, sr2],

                        )

                        if_f0_3.change(

                            change_f0,

                            [if_f0_3, sr2, version19],

                            [f0method8, pretrained_G14, pretrained_D15],

                        )

                    with gr.Row():

                        but5 = gr.Button("1 Click Training", variant="primary", visible=False)

                        but3.click(

                            click_train,

                            [

                                training_name,

                                sr2,

                                if_f0_3,

                                spk_id5,

                                save_epoch10,

                                total_epoch11,

                                batch_size12,

                                if_save_latest13,

                                pretrained_G14,

                                pretrained_D15,

                                gpus16,

                                if_cache_gpu17,

                                if_save_every_weights18,

                                version19,

                            ],

                            info3,

                            api_name="train_start",

                        )

                        but4.click(train_index, [training_name, version19], info3)

                        but5.click(

                            train1key,

                            [

                                training_name,

                                sr2,

                                if_f0_3,

                                dataset_folder,

                                spk_id5,

                                np7,

                                f0method8,

                                save_epoch10,

                                total_epoch11,

                                batch_size12,

                                if_save_latest13,

                                pretrained_G14,

                                pretrained_D15,

                                gpus16,

                                if_cache_gpu17,

                                if_save_every_weights18,

                                version19,

                                gpus_rmvpe,

                            ],

                            info3,

                            api_name="train_start_all",

                        )



    if config.iscolab:

        app.queue(concurrency_count=511, max_size=1022).launch(share=True)

    else:

        app.queue(concurrency_count=511, max_size=1022).launch(

            server_name="0.0.0.0",

            inbrowser=not config.noautoopen,

            server_port=config.listen_port,

            quiet=True,

        )