--- base_model: HuggingFaceH4/zephyr-7b-beta inference: false model_type: mistral prompt_template: | ### Instruction:\n {prompt} ### Response:\n quantized_by: mwitiderrick tags: - deepsparse --- ## Zephyr 7B β - DeepSparse This repo contains model files for [Zephyr 7B β](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) optimized for [DeepSparse](https://github.com/neuralmagic/deepsparse), a CPU inference runtime for sparse models. This model was quantized and pruned with [SparseGPT](https://arxiv.org/abs/2301.00774), using [SparseML](https://github.com/neuralmagic/sparseml). ## Inference Install [DeepSparse LLM](https://github.com/neuralmagic/deepsparse) for fast inference on CPUs: ```bash pip install deepsparse-nightly[llm] ``` Run in a [Python pipeline](https://github.com/neuralmagic/deepsparse/blob/main/docs/llms/text-generation-pipeline.md): ```python from deepsparse import TextGeneration prompt='### Instruction:\nWrite a Perl script that processes a log file and counts the occurrences of different HTTP status codes. The script should accept the log file path as a command-line argument and print the results to the console in descending order of frequency.\n\n### Response:\n' model = TextGeneration(model_path="hf:neuralmagic/zephyr-7b-beta-pruned50-quant-ds") print(model(prompt, max_new_tokens=200).generations[0].text) """ Here's a Perl script that meets the requirements: use strict; use warnings; sub get_status_code { my ($status) = (); my ($match) = qr/\s*\d{3}\s*$/; return $1 if ($status =~ $match); } sub count_occurrences { my ($file) = shift; my (%counts) = (); open my $fh, '<', $file or die "Can't open $file: $!"; while (my $line = <$fh>) { my ($status) = get_status_code($line); $counts{$status}++; } close $fh; return \%counts; } my ($file) = shift; my (@codes) = qw(200 300 400 500); my (@sorted) = (); foreach my ($status, $count) (@codes, \%{ $status }->value()) { push @sorted, [$count, $status]; } foreach my ($code, $freq) (@sorted) { print "$code\t$freq\n"; } my ($results) = count_occurrences($file); my (@sorted) = sort { $b[1] <=> $a[1] } @{$results}; foreach my ($code, $freq) (@sorted) { print "$code\t$freq\n"; } """ ``` ## Prompt template ``` ### Instruction:\n {prompt} ### Response:\n ``` ## Sparsification For details on how this model was sparsified, see the `recipe.yaml` in this repo and follow the instructions below. ```bash git clone https://github.com/neuralmagic/sparseml pip install -e "sparseml[transformers]" python sparseml/src/sparseml/transformers/sparsification/obcq/obcq.py HuggingFaceH4/zephyr-7b-beta open_platypus --recipe recipe.yaml --save True python sparseml/src/sparseml/transformers/sparsification/obcq/export.py --task text-generation --model_path obcq_deployment cp deployment/model.onnx deployment/model-orig.onnx ``` Run this kv-cache injection to speed up the model at inference by caching the Key and Value states: ```python import os import onnx from sparseml.exporters.kv_cache_injector import KeyValueCacheInjector input_file = "deployment/model-orig.onnx" output_file = "deployment/model.onnx" model = onnx.load(input_file, load_external_data=False) model = KeyValueCacheInjector(model_path=os.path.dirname(input_file)).apply(model) onnx.save(model, output_file) print(f"Modified model saved to: {output_file}") ``` Follow the instructions on our [One Shot With SparseML](https://github.com/neuralmagic/sparseml/tree/main/src/sparseml/transformers/sparsification/obcq) page for a step-by-step guide for performing one-shot quantization of large language models. ## Slack For further support, and discussions on these models and AI in general, join [Neural Magic's Slack Community](https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ)