import argparse, gc, shutil from transformers import AutoTokenizer from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig from datasets import load_dataset parser = argparse.ArgumentParser() parser.add_argument("--model-id", type=str) parser.add_argument("--save-dir", type=str) parser.add_argument("--channelwise", action="store_true") parser.add_argument("--num-samples", type=int, default=512) parser.add_argument("--max-seq-len", type=int, default=2048) def preprocess(example): return {"text": tokenizer.apply_chat_template(example["messages"], tokenize=False)} if __name__ == "__main__": args = parser.parse_args() dataset = load_dataset("HuggingFaceH4/ultrachat_200k", split="train_sft[:5%]") tokenizer = AutoTokenizer.from_pretrained(args.model_id) ds = dataset.shuffle().select(range(args.num_samples)) ds = ds.map(preprocess) examples = [ tokenizer( example["text"], padding=False, max_length=args.max_seq_len, truncation=True, ) for example in ds ] if args.channelwise: group_size = -1 else: group_size = 128 quantize_config = BaseQuantizeConfig( bits=4, # Only support 4 bit group_size=group_size, # Set to g=128 or -1 (for channelwise) desc_act=False, # Marlin does not suport act_order=True model_file_base_name="model" # Name of the model.safetensors when we call save_pretrained ) model = AutoGPTQForCausalLM.from_pretrained( args.model_id, quantize_config, device_map="auto") model.quantize(examples) gptq_save_dir = "./tmp-gptq" print(f"Saving gptq model to {gptq_save_dir}") model.save_pretrained(gptq_save_dir) tokenizer.save_pretrained(gptq_save_dir) del model gc.collect() print("Reloading in marlin format") marlin_model = AutoGPTQForCausalLM.from_quantized( gptq_save_dir, use_marlin=True, device_map="auto") print("Saving in marlin format") marlin_model.save_pretrained(args.save_dir) tokenizer.save_pretrained(args.save_dir) shutil.rmtree(gptq_save_dir)